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Abstract 

Hairless mice have been widely used in basic research and clinical trials. Two 

new mouse mutants with hair loss arose spontaneously in the breeding colony of Oak 

Ridge National Laboratory. The first homozygotes mutant, called near naked hairless 

(Hrn), never develops a normal coat, while heterozygotes display a sparse coat and 

become completely nude as they age. The Hrn/Hrn mutant mice are significantly smaller 

in body size and have very short, curly, and few vibrissae. Histological analysis revealed 

premature keratinization in the precortical region of hair follicles, formation of 

mineralized dermal cysts, and loss of hair follicles. Adult heterozygotes display pili 

multigemini (i.e. more than one hair from one piliary canal) after the first hair cycle, 

suggesting abnormal regulation of hair shaft formation by the mutation. A mutation was 

not identified in the coding region of Hr nor in candidate genes around Hr, suggesting a 

possible regulatory mutation of Hr. Microarray analysis was used to survey the gene 

expression profile and to identify the molecular mechanisms altered by the Hrn mutation. 

Several pathways including Wnt/β-catenin, TGF-β, and apoptosis are significantly altered 

in Hrn mutants, indicating the involvement of Hrn in these pathways. Hrn mutant mice are 

also suggested to be a research model for human MUHH (Marie Unna Hereditary 

Hypotrichosis). 

The second mouse mutant, called rhino-like (HrrhR), displays progressive and 

random hair loss and wrinkling skin, leading to a rhinocerotic appearance. Histological 

analysis revealed the formation of utricles at as early as 10 days of age, the formation of 

dermal cysts, and the destruction of hair follicles. Since the phenotype in the homozygous 

mutants is very close to that in Hrrh mutant mice, the genomic DNA of Hr gene was 

directly sequenced. A nonsense mutation was identified in the exon 12, leading to 

significantly reduced Hr expression, probably due to nonsense-mediated decay. The 

allele was named as rhino in Oak Ridge with the symbol HrrhR (R for Oak Ridge). 

Microarray analysis of skin from mice at 7, 10, and 35 days was applied to identify the 

downstream events of the HrrhR mutation. Several genes including Krt1-10, Krt2-1, IL-

17, and Itgb4, were identified as the potential targets of HrrhR. Wnt/β-catenin, apoptosis, 

and ERK/MAPK signaling pathways were altered in HrrhR/HrrhR mutant mice, suggesting 
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a possible role of Hr to regulate these pathways. Microarray analysis also shows many 

immune-related genes with differential expression, indicating the possible involvement of 

Hr in immune response. Identification of this new Hr allele and its related research 

allows further understanding about the function of Hr and the mechanisms of alopecia, 

i.e. hair loss. 
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Chapter 1 Introduction  

The hair follicle represents a very complex biological system with growth and 

cycling throughout the whole life.  Hair follicle is widely used as a model to study 

epithelial-mesenchymal interactions during animal and human development.  Hair 

follicles are also used as a source of pluripotent stem cells from adult skin. Hair loss in 

mice can be used to model many different human diseases with hair loss. Mouse models 

can be treated as preclinical models to test new treatments for human alopecia, i.e. hair 

loss.  In industry, hair follicle is also the scientific foundation for a multi-billion dollar 

industry. Therefore it is critical to study the mechanisms involved with hair growth and 

cycle in both mouse and human. 

In this dissertation research, two mouse mutants, each with a hair loss phenotype, 

were used to study the mechanisms of hair loss. Both of the mutants arose spontaneously 

in Oak Ridge National Laboratory (ORNL) mouse colony. The first one, called near 

naked hairless (Hrn), arose spontaneously in the 1980s. Homozygous Hrn/Hrn mice never 

grow a normal coat of hair and are virtually hairless. The phenotype of heterozygous 

mice is less severe. They develop a sparse coat early in life, but become completely nude 

with age. Homozygous mutants also exhibit reduced body growth, and the homozygous 

females have difficulties in caring for their offspring. Allelism testing with the known 

hairless mice (Hrhr) (Stelzner, 1983) suggested that the mutation might be an allele of the 

hairless gene (Hr) with 95% confidence. However, no mutation was found by sequencing 

the entire Hr gene, including introns, exons, 3’UTR and 5’-UTR region. Although a 

mutation was not identified in the Hrn mutants, the Hrn mutant mice were characterized 

systematically by using histological study, scanning electron microscopy, 

immunohistochemistry, microarray analysis, sequencing, and other molecular biological 

techniques. A group of differentially expressed genes and related signal pathways were 

identified in the mutant mice through microarray analysis, which suggests the possible 

functions of the mutated gene. Hrn mice are potential models for Marie Unna Hereditary 

Hypotrichosis (MUHH), a hair loss syndrome in humans for which the genetic cause is 

not yet known.  
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The second mutant is named as Rhino-like (registered as Oak Ridge rhino allele 

of Hr (HrrhR) in MGI (Mouse Genome Informatics)). It arose spontaneously downstream 

from a translocation experiment in ORNL, but the mutation is not due to a translocation 

in the genome. Homozygous mutant mice have a normal coat of hair until 2-3 weeks after 

birth, the time at which the first hair cycle initiates. Mutant mice fail to initiate the first 

hair cycle and begin to lose their hair. By 5-weeks of age the mice are hairless and their 

skin is wrinkled. The phenotype of this mutant is very similar to the known rhino (Hrrh) 

mice. The mutation was identified in exon 12 of Hr as a nonsense mutation leading to a 

premature stop codon, by genomic sequencing. Formation of utricles was identified as the 

earliest phenotypic changes that started at day 10 after birth, through histological analysis. 

Microarray experiments were used to characterize the downstream events caused by the 

mutation with the mice at 7, 10, and 35 days after birth. Groups of differentially 

expressed genes were identified as well as their related signal pathways, which suggest 

possible roles of Hr protein in hair follicle cycling. 

Altogether, the research related with these two mouse mutants will promote the 

understanding of hair growth and cycle. It will help to understand how the hair growth 

and cycles in mouse are regulated, and eventually help to cure the hair loss in human 

patient or remove hair from patients. 
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Chapter 2 The mammalian hair follicle and alterations that lead to hair loss 

Reasons to study hair loss in mice 

 Hair follicles in mammalian skin produce hair shafts for many functions including 

decoration, thermoregulation, collecting sensory information, protection against trauma 

and insect penetration, social communication, and mimicry (Stenn and Paus, 2001). Hair 

loss, i.e. alopecia, is a chronic dermatological disorder. There are a variety of different 

causes for hair loss, including but not limited to hormones (Schmidt, 1994),  

chemotherapy (Rosman, 2004), radiotherapy (Rosman, 2004), genetic mutations 

(O'Shaughnessy and Christiano, 2004), stress (Brajac et al., 2003), smoking (Trueb, 

2003), cancer (Pierard-Franchimont and Pierard, 2004) and systemic diseases (Spencer 

and Callen, 1987). Hair loss itself is neither life threatening nor very painful. However, 

the aesthetic effects can induce a strong stress and anxiety, especially for women patients 

with complete hair loss (Cash et al., 1993; Hadshiew et al., 2004; Hunt and McHale, 

2005). 

The hair follicle is unique with its cycling characteristic of regression and 

regeneration during the entire life span in mammals as it completely regenerates itself 

with each hair follicle cycle due to the presence of a stem cell population in the region 

known as the bulge (Christiano, 2004). It represents a stem cell-rich, prototypic 

neuroectodermal-mesodermal interaction system and a classical model for the study of 

epithelial-mesenchymal interactions during development (Rendl et al., 2005; Reynolds 

and Jahoda, 2004). Mouse hair loss mutants are potential models for human alopecia 

(Irvine and Christiano, 2001; O'Shaughnessy and Christiano, 2004; Porter, 2003), and 

they offer two distinct advantages for hair loss research: one is the synchronized cycles 

that occur during the first two hair cycles in mouse, while the other is the short time of 

mouse hair cycles, only 28 days compared to several years in human (Porter, 2003). 

Study of hair follicle cycle is also potentially important to promote further understanding 

of skin tumors, as many types of skin cancer are thought to originate from cells within the 

hair follicle (Paus et al., 1999a; Paus and Cotsarelis, 1999; Stenn and Paus, 2001). 

Altogether, research with hair follicle will be critical to further our understanding about 

development and growth control of keratinocytes and stem cells. 
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Structure of the hair follicle 

 The size and shape of hair follicles varies with their locations (Paus and Cotsarelis, 

1999). However, they all have the same basic structure, shown in figure 2-1. The hair 

shaft is produced from the hair matrix as the end product of hair follicle proliferation and 

differentiation. Hair matrix contains rapidly proliferating keratinocytes and melanocytes. 

The hair shaft is divided into the hair cuticle on the outside, the cortex, and the medulla in 

the center. Hair shaft cuticle consists of overlapping cells that are arranged like shingles 

pointing outward and upward. Hair shaft cortex, the bulk of the hair shaft, is composed of 

hair-specific keratin filaments and keratin-associated proteins with melanin produced by 

melanocytes in the matrix region (Paus and Cotsarelis, 1999). Hair shaft medulla, the 

central part of the hair shaft, is composed of large, loosely connected keratinized cells 

with large intercellular air spaces. The hair shaft is surrounded by the inner and outer root 

sheath (IRS and ORS). The inner root sheath contains three concentric layers including 

Henle’s layer, Huxley’s layer, and the cuticles (Muller-Rover et al., 2001). The bulge is a 

portion of the outer root sheath, located at the region of the insertion of the arrector pili 

muscle. It contains epithelial stem cells responsible for regenerating the follicle during 

early anagen (Fuchs, 1998; Gho et al., 2004; Morris et al., 2004). The outer root sheath 

also contains melanocytes, Langerhan’s cells (dendritic antigen-presenting cells), and 

Merkel cells, which are specialized neurosecretory cells. The dermal papilla at the base of 

hair follicles is a cluster of mesenchymal cells and is thought to control the number of 

matrix cells and thus the size of hair (Hardy, 1992; Paus and Cotsarelis, 1999). Hair 

follicles have a very complex immunologic profile that includes perifollicular 

macrophages, mast cells and other immunocytes.  

Hair follicle morphogenesis 

Normal development of hair follicles requires interactions between the epithelium 

and underlying mesenchyme in utero. Different types of hair follicles have different time-

courses of induction during morphogenesis. In murine dorsal skin, hair follicle 

morphogenesis is induced at E14.5 and development is complete at postnatal day 6 to 8. 

The induction of vibrissae hair follicle morphogenesis starts at E12.5, earlier than dorsal 

skin hair follicles. Hair follicles for the secondary shorter and thinner hair develop from 
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Figure 2-1 Schematic illustration of the structure of hair follicle (Botchkarev and Paus, 

2003; Fuchs, 1998) and hair shafts (Adapted from www.regentpharmacy.co.uk). 

Abbreviations: SG: sebaceous gland; APM: arrector pili muscle; ORS: outer root sheath; 

IRS: inner root sheath; HS: hair shaft; mel: melanocytes; HM: hair matrix; DP: dermal 

papilla.  

 

DP 
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E16.5 to postnatal day 0.5. There are eight consecutive stages in hair follicle 

morphogenesis as shown in figure 2-2 (Botchkarev and Paus, 2003).  

In stage 1, hair germ or hair placode forms in the basal layer of epidermis. The 

source of the first dermal message to form a hair placode is not known. The keratinocytes 

in hair placodes are distinguished from other keratinocytes by the expression of growth 

factors (Wnt-10b, Eda, BMP-2), growth factor receptors (Edar, TGFβRII, BMPR-1A) and 

transcriptional regulators (Lef1, β-catenin and Msx2) (Botchkarev and Kishimoto, 2003; 

Schmidt-Ullrich and Paus, 2005). Accordingly, at least three signaling pathways 

including Wnt/β-catenin/Lef-1, Eda/Edar, and TGFβ2/TGFβ-RII, are involved in the 

positive regulation of hair placode formation (Fuchs, 1998). There are two signaling 

pathways inhibiting hair follicle induction, including BMP-2/4 and EGF (epidermal 

growth factor) signaling (Botchkarev and Paus, 2003). The balance between these 

inhibitors and stimulators tightly controls the initiation stage of hair follicle development.  

Hair placode grows down into the dermis and forms hair peg in stage 2 and 3. The 

keratinocytes in hair peg highly express sonic hedgehog (Shh) and its receptor Ptc1, 

platelet-derived growth factor A (PDGF-A), neurotrophins, TGFβ-RII, and neural-cell 

adhesion molecule (N-CAM) (Rogers, 2004). The mesenchymal cells express Wnt-5a and 

downstream effectors Lef1, Ptc1, Gli1, PDGF-Rα, Noggin, and alkaline phosphatase 

(Botchkarev and Kishimoto, 2003; Fuchs, 1998). All these molecules are essential to 

promote the morphogenesis of dermal papilla (Botchkarev and Kishimoto, 2003). 

In stage 4, the dermal papilla is formed and is incorporated into the epithelial hair 

bulb. The keratinocytes in hair bulb proliferate and differentiate into the inner root sheath 

and hair shaft cells (Paus and Cotsarelis, 1999). At stage 5, sebocytes are visible in the 

distal parts of the hair follicle and melanin granules and hair shaft are above the dermal 

papilla (Schmidt-Ullrich and Paus, 2005). The hair shaft reaches the level of sebaceous 

gland and the hair canal becomes visible in skin during stage 6-7. In stage 8, the hair 

follicle elongates to the maximal length and hair bulb is visible; sebaceous gland and 

arrector pili muscle are present in the dermis and the hair shaft finally emerges through  

 



www.manaraa.com

7 7

 
Figure 2-2 Schematic diagram of hair follicle morphogenesis and its molecular regulation 

(adapted from (Botchkarev and Paus, 2003))
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the epidermis (Rogers, 2004; Schmidt-Ullrich and Paus, 2005). It is found that Foxn1, 

Cutl1, EGF receptor or its ligand TGF-β, keratin 1-10 and keratin 2-1, trichohyalin, 

and the components of the cornified envelope including transglutaminases, loricrin, and 

involucrin affect the differentiation of inner root sheath (Botchkarev and Paus, 2003; 

Fuchs, 1998). Hair shaft differentiation is controlled by multiple signaling pathways 

including Wnt/β-catenin/Lef-1, Hoxc13, BMP/Msx-2/Foxn1, Notch, and desmoglein 4 

(Dsg4) (Botchkarev and Paus, 2003; Fuchs, 1998). Interestingly, BMP signaling is 

involved in controlling the expression and function of Lef1, Hoxc13, and Foxn1 

transcription factors in differentiating hair shaft precursor cells. 

Hair follicle cycling 

Hair follicles show periodic changes in their activity during hair cycles. The most 

unique feature of a hair follicle is its ability to regress and regrow in a regulated manner 

throughout life. The length of the hair cycle, i.e. the period between catagens in two 

continuous hair cycles, varies widely across species. In human it is about 10 years, while 

in mice it is about 28 days. Many species, like humans, exhibit asynchronous cycles, in 

which adjacent hair follicles can be in completely different stages of the hair follicle 

cycle. In mice, at least in the first few cycles, follicles are synchronized and proceed in a 

head to tail manner. Hair follicle cycle includes three stages: intensive growth and hair 

production in anagen, apoptosis-driven regression in catagen, and resting stage in telogen 

(Stenn and Paus, 2001) as shown in figure 2-3. Hair follicle cycling represents repetitive 

tissue regeneration and involution. The first hair cycle in mice begins with hair follicle 

development and anagen prenatally and ends with the first catagen, about 14 days after 

birth. Catagen is induced by regulated apoptosis, leading to retraction of the epithelial 

strand and its disconnection from the dermal papilla. In telogen, the hair fiber becomes 

loosened and falls out. A new cycle initiates, the follicle regrows, and the next anagen 

proceeds. The cycling of hair follicles begins with catagen instead of anagen shortly after 

the hair follicle morphogenesis with the first coat. Therefore, the chronology of hair 

follicle cycling is from catagen to telogen, to anagen, and back to catagen. The hair 

follicle alters its normal cycling behavior in response to damage, such as by 

chemotherapy so that hair follicle cycling continues later (Paus and Foitzik, 2004). 
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Figure 2-3 Schematic illustration of the hair follicle cycle.  
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Pigmented hair shafts are actively produced and the follicle reaches it maximal length 

and volume during anagen. All new hair shaft production and pigmentation is ceased as 

the club hair is formed during catagen. The club hair rest loosely in the hair canal and is 

actively shed during telogen (Paus and Foitzik, 2004). 

It is known that a large number of cytokines, growth factors, transcription factors, 

enzymes, and adhesion molecules, including members of the epidermal, fibroblast, and 

transforming growth factor families, are implicated in the hair growth cycle (Reviewed in 

(Nakamura et al., 2001; Paus and Foitzik, 2004)).  For instance, insulin-like growth factor 

1, fibroblast growth factor 5 and 7, play very important roles in hair follicle development 

and cycling, especially in the anagen stage (Paus, 1998; Paus and Cotsarelis, 1999; Paus 

and Foitzik, 2004; Paus et al., 1999b).  The genes that are important in the hair follicle 

cycle are summarized in table 2-1.  

General mechanisms of hair growth disorders 

Hair follicle morphogenesis and hair cycle are the scientific foundations of the 

vast majority of human patients with hair growth disorders. For the genes involved in hair 

follicle morphogenesis or the hair cycle, mutations in these genes leading to reduced 

expression or overexpression could destroy the balance required for hair follicle 

morphogenesis and hair follicle cycles, thus leading to disorders of hair growth, including 

hair loss. Telogen effluvium is an extremely common form of alopecia, i.e. hair loss with 

excessive shedding of hair. Normally, most of the hair follicles are in the anagen stage 

while a rather small portion of hair follicles are in telogen. A larger portion of hair 

follicles stays in telogen leading to hair shedding when telogen effluvium occurs. The 

causes for telogen effluvium include pregnancy, medications including minoxidil, change 

of exposure to sunlight, psychological stress, and high fever (Cotsarelis and Millar, 2001). 

The hair follicles in telogen effluvium are still intact and able to generate new hairs later. 

Androgenetic alopecia is due to the progressive shortening of successive anagen cycles 

and is commonly manifested as telogen effluvium. The hair loss in male is patterned as 

frontal recession and thinning at the vertex and that in female is as loss of hair over the 

crown with sparsing of the frontal hair line. Androgenetic alopecia results in a decrease 

in hair follicle size as well as a decrease in the duration of anagen and an increase in the 
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Table 2-1. The genes involved in mammalian hair cycles  

Interfaces List of genes involved in the process 

 
Anagen-catagen 

transition 

FGF-5, FGFR1, TGFβ-1 and 2, Neurotrophins (BDNF, NT-3, 
NT-4) and their receptors (TrkB, TrkC), SCF, VEGF, HGF, IGF-
1, KGF, Endothelin-1 (ET-1), IL-1α/β, IGF-BP3/4/5, vitamin D 

receptor, prolactin, RXRα,  glucocorticoid receptors, 
neuropeptide substance P, BMP-2, follistatin, PTHrp, calcitriols, 

retinoids, estrogens, activin, GDNF, INF-γ 

Cell death and 
survival during 

catagen 

TNF receptor, Fas/CD95, p75 kD neurotrophin receptor, 
Caspase-1, 3, 4, 7, P53, Bax, Bcl-2, Bcl-XL, desmoglein-3 and 

cathepsin L  
 

Telogen-anagen 
transition 

BMP-4, BMPR-IA, noggin, STAT3, FGF7, WNTs, desmoglein-3, 
cathepsin L, neuropeptide substance P, estrogen receptor, Ssh, 

HGF, IGF-1, TGF-α, KGF, ACTH, SP, β-catenin, desmoglein 1/3, 
Msx2 

 

Abbreviations: FGF: fibroblast growth factor; TGF: transforming growth factor; BDNF: 

brain-derived neurotrophin factor; NT: neurotrophins; SCF: stem cell factor: VEGF: 

vascular endothelial growth factor; HGF: hepatocyte growth factor; IGF: Insulin-like 

growth factor; KGF: Keratinocyte growth factor; IGF-BP: Insulin-like growth factor 

binding protein; RXR: retinoid X receptor; BMP: bone morphogenic protein; PTHrp: 

parathyroid-related peptide; GDNF: glial cell line-derived neurotrophic factor; IL: 

interleukin; TNF: Tumor necrosis factor; STAT: Signal Transducer and Activators of 

Transcription; ACTH: adrenocorticotrophin; INF: interferon; SP: substance P. 
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percentage of hair follicles in telogen (Cotsarelis and Millar, 2001). Testosterone is 

required for androgenetic alopecia to develop in men, but not determined in women.  

Hypertrichosis is excessive hair growth beyond that considered normal according 

to age, race, sex, and skin region. Hirsutism is excessive hair growth in androgen-

dependent areas in women. Both hypertrichosis and hirsutism result from a prolonged 

anagen with an abnormal enlargement of hair follicles. Small vellus hairs turn into large, 

terminal hairs. In mice, a mutation in FGF5 causes the striking angora mouse phenotype 

with 50% longer hair growth due to 50% longer anagen phase and delay of the catagen 

phase. Overexpression of either Bcl-XL or Bcl-2 in the outer root sheath decreases the 

duration of anagen and causes alopecia. It has been known that a large number of 

different genes contribute to the switches for the transformations from one hair cycle 

stage to the next as shown in table 2-1. There are still a lot of unknowns about hair 

follicle cycle. There are no exact numbers on the times that a given hair follicle subtype 

in a given location could cycle during life time of a mammalian organism. The autonomy 

and spontaneity of hair follicle, the non-linkage to known perennial, seasonal, circadian 

or diurnal rhythms, disparate length of individual hair cycle phases, the micro- and 

macro-environment around hair follicles during hair cycles, are formidable challenge for 

dermatological research with hair follicle even if cycling of a single hair follicle is very-

well known. However, many molecular players in hair cycle control have been identified 

in murine hair follicle cycle, including Wnt family members, TGFβ/BMP family 

members and their antagonists, the Shh-patched-Gli pathway, notch signaling, HGF, 

neurotrophins, and FGFs (reviewed in (Paus and Foitzik, 2004). Mutations in these genes 

contribute to abnormal hair growth and hair follicle cycling. Hairless is one of the key 

catagen controllers (Panteleyev et al., 1999) and mutations in hairless cause alopecia in 

both mouse and human (Panteleyev et al., 1998b). Below, two genes closely related with 

hair shaft differentiation and hair growth are described in detail. 

Foxn1 

 Foxn1 gene, formerly called Whn and Hfh11, is the second gene to be defined to 

affect hair growth after Hr. Mutations in this gene, which are autosomal recessive, cause 

the “nude” phenotype first reported in 1966 by Flanagan SP in Edinburgh, UK (Flanagan, 
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1966). It was noticed that nude mice have normal hair follicle at birth, but that by 6 days 

of age the hair shaft starts to twist and coil with the follicular infundibulum, failing to 

penetrate the epidermis (Flanagan, 1966). Nude mice also suffer from agenesis of the 

thymus and are severely immunocompromised (Pantelouris, 1968; Pantelouris and Hair, 

1970). This suggests the pleiotropic effects of Foxn1 in different tissues (Flanagan, 1966). 

Foxn1 gene encodes a highly conserved transcription factor of the winged helix domain 

family containing a C-terminal transcriptional activation domain and a DNA binding 

domain (Mecklenburg et al., 2005). Loss of function of either one is thought to cause the 

lack of fur development and thymic agenesis. The mutation of Foxn1 in nude mice is 

caused by a single base pair deletion in exon 3, which leads to a frameshift and a 

premature stop codon and a protein lacking the DNA binding domain (Nehls et al., 1994). 

There are totally six spontaneously arisen mutations in Foxn1 gene as well as two 

targeted mutations (Blake et al., 2003). Both the skin and the thymic phenotype of nude 

mice were able to be rescued by an engineered 110kb transgene containing Foxn1, but 

not by a cosmid-derived 26kb transgene containing Foxn1 (Cunliffe et al., 2002). 

Mutations in Foxn1 gene have been described in rats and in humans (Frank et al., 1999; 

Fuchs, 1998; Nehls et al., 1994) 

Nude mice are actually not hairless at all. They have a normal number of hair 

follicles and normally cycling hair follicles despite the marked defects within the hair 

shafts (Mecklenburg et al., 2005). However, the keratinization in the hair follicles is 

severely impaired. A decreased sulfur concentration in nude mice was found in hair fibers 

(Kopf-Maier et al., 1990; Mecklenburg et al., 2005). The IRS cuticle and the cuticle of 

the hair shaft are fragmented into globular amorphous structures (Kopf-Maier et al., 

1990) due to the lack of keratin mHa3. The cortex of hair shaft is composed by abnormal 

globular aggregates (Kopf-Maier et al., 1990). The epidermis shows only few and thin 

bundles of tonofilaments in the basal, spinous and granular layers and bizarrely formed 

and irregularly arranged lamellae of corneocytes in the stratum corneum (Kopf-Maier et 

al., 1990). The medulla of hair shaft in nude mice is less septulated than in heterozygous 

or wild type animals probably due to the reduced expression of desmocollin-2 (Johns et 

al., 2005). The nails of nude mice are severely malformed showing an onychodystrophy 
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associated with a basophilic stippling of the dorsal nail plate and a significantly reduced 

sulfur concentration (Flanagan, 1966; Mecklenburg et al., 2005).  

Foxn1 is not expressed in the formation of the hair bud, but in the pre-cortical 

matrix of developing hair follicles as well as in the hair matrix keratinocytes, precortical 

hair matrix cells, trichocytes of the hair cortex, and the outer root sheath keratinocytes in 

cycling hair follicles (Mecklenburg et al., 2005). Foxn1 is very important for maintaining 

the balance between keratinocyte growth and differentiation in differentiating 

keratinocytes. Overexpression of Foxn1 under the control of involucrin promoter in 

differentiating keratinocytes inhibited markers of late differentiation including 

profilaggrin, involucrin, and loricrin while the keratinocytes from nude mice express 

higher levels of profilaggrin and loricrin than those from wild type mice after stimulation 

with calcium (Mecklenburg et al., 2005). Foxn1 is suggested to be involved in the control 

of the expression of certain keratins, such as mHa1, mHa3, and mHa4, which are 

downregulated in nude mice and upregulated with over-expression of Foxn1 in HeLa 

cells (Mecklenburg et al., 2005; Schlake et al., 2000; Schorpp et al., 2000). Foxn1 is also 

suggested to be a negative regulator of protein kinase C (PKC) activity, which is known 

to regulate keratinocyte proliferation and differentiation, and to inhibit hair growth 

(Harmon et al., 1995; Harmon et al., 1997; Xiong and Harmon, 1997). Foxn1 might 

stimulate the expression of protein kinase B (Akt kinase) triggering the completion of the 

differentiation and formation of the granular and cornified epidermal layer despite of the 

lack of knowledge with the nude mice (Janes et al., 2004). The regulation of Foxn1 is 

inhibited by the activation of MAP kinases and promoted by the overexpression of Wnt4 

or Wnt5b (Mecklenburg et al., 2005) or under the stimulation of bone morphogenic 

protein receptor 1a (BMPr1a) (Ma et al., 2003).  

Hoxc13 

Hoxc13 is the first hox gene shown to play a universal role in hair follicle 

development as both Hoxc13-deficient and over-expressing mice exhibit severe hair 

growth and patterning defects (Godwin and Capecchi, 1998; Tkatchenko et al., 2001). 

Hoxc13 is expressed in the vibrissae and hair follicles, mainly in the matrix of the hair 
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bulb and the precortical region of the hair shaft as well as in the filiform papillae of the 

tongue (Awgulewitsch, 2003; Godwin and Capecchi, 1998).  

Hoxc13 mutant mice lack vibrissae, all pelage hair types, peri-anal hairs, 

eyelashes due to the brittleness of the hair fibers although the mice develop 

morphologically normal hair follicles (Godwin and Capecchi, 1998). Most homozygotes 

die between postnatal day 7 and 14 with progressive weight loss and weakness relative to 

the littermates (Godwin and Capecchi, 1998). The lack of external hair in Hoxc13 mutant 

mice suggests that Hoxc13 plays important roles in hair shaft differentiation by either 

regulating the expression of hair specific keratin or controlling the differentiation of 

precursor cells in hair follicle, which are supported by the following evidence.  

The GC13 mice, which overexpress murine Hoxc13 in differentiating 

keratinocytes of hair follicles, showed short tails, taut skin, kinky whiskers, and smaller 

stuture, progressive alopecia with age with epidermal thickening and follicular 

enlargement due to thickened outer root sheath and keratinaceous materials filled cysts 

(Tkatchenko et al., 2001). The expression of a cluster of keratin-associated proteins 

complex 16 (krtap16) was downregulated due to in GC13 mice, suggesting the possible 

role of Hoxc13 in the regulation of keratin expression.  

It was also found that Hoxc13 was involved in the regulation of human hair 

keratin gene expression via binding to the recognition motif TT(A/T)ATNPuPu (Jave-

Suarez et al., 2002). The reduced expression of bone morphogenic protein 4 (BMP-4) in 

hair follicles, which had the similar expression pattern with Hoxc13 in hair follicles, 

caused down-regulation of Hoxc13 and impaired hair shaft differentiation and distal 

expansion of proliferating keratinocytes normally restricted in the proximal matrix region 

(Kulessa et al., 2000). It suggests that Hoxc13 might be involved in the control of 

precursor cell differentiation in hair follicles. Hoxc13 might help to maintain the balance 

of hair keratin expression and of the controls for keratinocytes differentiation through a 

negative autoregulatory feedback control of Hoxc13 expression level (Awgulewitsch, 

2003; Tkatchenko et al., 2001). 
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Hairless and hair loss 

History of hairless mice 

In the search of genes responsible for hair loss, hairless (Hr) gene was the first 

one found to cause alopecia. The hairless mouse was first captured in an aviary in 1924 

in North London, UK (Brooke, 1926). It was pink with smooth skin. The first description 

of rhino mice was reported by Gaskoin in 1856 (Gaskoin, 1856) as “rhinoceros” with hair 

loss and wrinkled skin. Later, it was shown that rhino and hairless are alleles of the same 

gene, Hr (Howard, 1940). Rhino alleles (Hrrh) have a more severe phenotype than alleles 

designated as hairless (Hrhr). It should also be noted that the skin from different Hr 

alleles differ in subtle details, which may be due to strain differences or the mutations 

themselves (Panteleyev et al., 1998c; Sundberg, 1994). The hairless (Hrhr) mice, widely 

used in dermatological research today, arose spontaneously in 1939 at McGill University 

in Montreal, Canada (Sundberg, 1994). 

Both hairless (Hrhr/Hrhr) and rhino (Hrrh/Hrrh) mutants are born with normal hair 

coat but lose their hair around the age of 3 - 4 weeks, and are more sensitive to UV and 

chemical carcinogens (Panteleyev et al., 1998b).  Both have been extensively used for 

many cutaneous studies due to the absence of hair, including ultraviolet and chemical 

induced carcinogenesis, topical application of compounds, wound healing, and 

microcirculation (Sundberg, 1994).  Homologs of murine hairless have been identified in 

human, rat, monkey, sheep, and pig (Ahmad et al., 1998a; Ahmad et al., 2002; Fernandez 

et al., 2003; Finocchiaro et al., 2003; Thompson, 1996).  

Features of Hr gene 

There are 19 exons in both human and murine Hr (Ahmad et al., 1998a; Cachon-

Gonzalez et al., 1994; Cichon et al., 1998). Hr is mainly expressed in brain and the 

epidermis and hair follicle in the skin, with lower expression in cartilage, developing 

tooth, inner ear, retina, testis, colon, stomach, pituitary gland, small intestine, appendix, 

liver, kidney, pancreas, spleen, and thymus (Ahmad et al., 1998a; Cachon-Gonzalez et 

al., 1999; Cichon et al., 1998). It was found that Hr in rat is expressed at high levels in 

cerebellum shortly after birth, reaching a peak between postnatal days 14 and 21 (Potter 

et al., 2001).  It was first cloned in rat as part of a screen for thyroid hormone-responsive 
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genes in the brain (Thompson and Bottcher, 1997). Three different isoforms of Hr have 

been described in human: isoform 1 (full length), and isoform 2 (short without exon 17) 

(Cichon et al., 1998), and isoform 3, which is not experimentally confirmed (Strausberg 

et al., 2002).  Isoform 2 is exclusively expressed at high levels in the human skin (Cichon 

et al., 1998).  No alternative transcripts have been reported in murine Hr thus far. 

Hairless protein (HR) is highly conserved in human, mouse, and rat (Cichon et 

al., 1998) with approximately 85% identity between human and rodent HR (Panteleyev et 

al., 1998b). The hairless protein (HR) in human, rat, and monkey have similar length to 

murine HR (Ahmad et al., 2002).  The identified sheep HR is similar to the fragment of 

1-715 amino acids in murine HR (Finocchiaro et al., 2003).  The identified pig HR is 

similar to the fragment of 818-1153 amino acids in murine HR (Fernandez et al., 2003).  

All of them share at least 70% similarity in protein sequence. Interestingly, no homologs 

of HR have been identified outside of mammals. 

HR contains a single zinc finger domain, which is a conserved 4-cysteine motif 

(C-X2-C-X18-C-X2-C) and is predicted to bind with DNA (Cachon-Gonzalez et al., 1994).  

It shares structural homology to the GATA family and to TSGA, a protein mainly 

expressed in rat testis (Cachon-Gonzalez et al., 1994). The homologs of murine hairless 

in sheep and monkey also contain the putative zinc finger domain by multiple sequence 

alignment (Ahmad et al., 2002; Finocchiaro et al., 2003).  Although most GATA family 

members contain two zinc finger domains, it is indicated that a single zinc finger domain 

found in GATA family members is sufficient for DNA binding (Pedone et al., 1997).  In 

addition to the putative zinc finger domain, HR is translocated into the nucleus via a 

novel bipartite nuclear localization signal (NLS) of the form KRA(X13)PKR (amino acid 

412-430), and is associated with components of the nuclear matrix, which may play roles 

in DNA organization, replication, gene transcription, RNA processing, potentially intra-

nuclear signaling for the regulation of gene transcription (Djabali et al., 2001; Djabali and 

Christiano, 2004). Mutation of the third cysteine residue in the conserved zinc finger 

domain to a glycine residue in human (C622G) is shown to be associated with APL (Aita 

et al., 2000). However, a residue change between the second and the third cysteines 



www.manaraa.com

18 18

(R620Q) does not cause APL or AUC in human (Hillmer et al., 2001; Hillmer et al., 

2002).  It suggests that the putative zinc finger domain is critical for the function of HR.   

It has been shown that HR has three LXXLL motifs within two separate α-helical regions 

(Djabali et al., 2001).  This LXXLL motif is conserved in many transcriptional 

coactivators, including TRIPs (Thyroid hormone Receptor Interacting Proteins) (Voegel 

et al., 1998) and DRIPs (vitamin D Receptor Interacting Proteins) (Rachez and Freedman, 

2000), and is required for interaction with nuclear receptors.   

Interestingly, HR has been shown to directly and specifically interact with thyroid 

hormone receptor (TR) and histone deacetylases (HDACs) in rat brain (Potter et al., 2001; 

Potter et al., 2002) and with vitamin D receptors (VDR) in vitro (Hsieh et al., 2003).  HR 

expression is directly regulated by thyroid hormone through TR, and then HR will bind 

with TR and facilitate the transcriptional repression by unliganded TR through the 

interaction with HDACs (Histone Deacetylases) (Potter et al., 2001; Thompson, 1996; 

Thompson and Bottcher, 1997).  A thyroid hormone responsive element was identified in 

the rat Hr promoter (Thompson, 1996). However, the Hr promoter was transactivated by 

T3 in neuroblastoma cells but not in keratinocytes (Engelhard and Christiano, 2004), 

suggesting that HR interacts with TR signaling in brain but not skin. The interaction of 

HR and TR is further found not to be involved in the pathogenesis of atrichia with 

popular lesions in human (Djabali et al., 2004).  

VDR is a nuclear receptor that functions as a ligand-activated transcription factor 

(Haussler et al., 1998).  Co-expression of HR with VDR inhibits VDR-mediated 

transactivation (Hsieh et al., 2003). VDR knockout mice (Li et al., 1997) also develop 

alopecia in skin, and are a phenocopy of Hrhr/Hrhr mutants (Miller et al., 2001).  Targeted 

expression of VDR in the skin promotes initiation of the postnatal hair follicle cycle and 

rescues the alopecia in VDR null mice (Kong et al., 2002a).  Both HR (Djabali et al., 

2001) and VDR (Haussler et al., 1998) are translocated into the nucleus via bipartite 

nuclear localization signals.  Expression of both HR and VDR are localized to normal 

murine epidermis and hair follicles (Gurlek et al., 2002), and are also differentially 

regulated during different hair cycle stages (Panteleyev et al., 2000; Reichrath et al., 

1994).  Mutations in human Hr cause atrichia with papular lesions, while mutations in 



www.manaraa.com

19 19

human VDR cause vitamin D-dependent rickets type IIA (VDDRIIA; OMIM 277440) 

along with atrichia with papular lesions in patients. A detailed clinical and histological 

comparison was done between these two genetically distinct forms of atrichia with 

papules (Zlotogorski et al., 2003). The similarity between these two distinct forms of 

APL suggests a functional relationship between HR and VDR. It was found recently that 

induction of vitamin D responsive genes including involucrin, transglutaminase, 24-

hydroxylase, was potentiated by inhibition of HR expression in the presence of vitamin 

D3, and vice versa (Xie et al., 2005). This suggests that HR functions as a co-repressor of 

VDR to block vitamin D3 action on keratinocytes.  

HR also contains a domain called Jumonji C (jmjC) (amino acids 999-1133) 

(Letunic et al., 2002).  Human homozygous missense mutations in this domain (D1012N 

and V1056M) (Klein et al., 2002; Zlotogorski et al., 2002a) cause AUC or APL, 

suggesting that this domain is critical for the normal function of HR in hair follicle 

cycles. One of the interaction domains of HR with thyroid hormone receptor (TR) is 

amino acids 1024-1040 (Potter et al., 2001), which is part of the JmjC domain.  The exact 

function of this domain still remains unknown. There are over 370 proteins containing the 

jmjC domain, ranging from Saccharomyces cerevisiae, C. elegans, Drosophila, and 

Arabidopsis, to mouse and human (Letunic et al., 2002).  Most of these proteins are 

hypothetical or putative proteins, which may represent a large family of proteins with 

unknown functions. It is also found that many transcription factors contain jmjC domains 

suggesting the possible single functional unit within the folded proteins (Balciunas and 

Ronne, 2000). The jmjC domain is a part of the cupin metalloenzyme superfamily and is 

described as “probable enzymes, but of unknown functions, that regulate chromatin 

reorganization processes” (Letunic et al., 2002). The function of jmjC domain was 

recently linked to the modulation of heterochromatization in fission yeast by showing that 

Epe1, a nuclear protein with jmjC domain, counteracts transcriptional silencing by 

negatively affecting heterochromatin stability (Ayoub et al., 2003). In addition, the jmjC 

domain is essential for the normal function of Epe1 in yeast (Ayoub et al., 2003). This 

suggests that HR might act through chromosome remodeling to regulate the expression of 

downstream genes.  
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Mutations in mice and phenotypes 

A large variety of mutations of Hr have been identified in mouse and human, all 

of which display autosomal recessive inheritance. Many different Hr alleles have been 

cloned in mice and are summarized in table 2-2. There are two general classes of 

phenotypes that result from the mutations in murine hairless. The less severe mutants are 

designated as hairless, while the more severe mutants are known as rhino. The phenotype 

of Hrba is intermediate between hairless and rhino(Garber, 1952). The mutations Hrba, 

Hrrh-2J, Hrrh-9J are now extinct (Panteleyev et al., 1998b). Hr was originally cloned in 

HRS/J mice as an insertion of a polytrophic provirus in the intron 6, which results in the 

aberrant splicing of Hr transcript therefore significantly reduced expression as low as 5-

10% of that in +/+ mice (Cachon-Gonzalez et al., 1994; Jones et al., 1993).  Most of the 

mutations identified in rhino mice are nonsense mutations in different exons of hairless 

(Brancaz et al., 2004; Panteleyev et al., 1998b; Zhang et al., 2005), leading to nonsense-

mediated decay of Hr transcripts (Maquat, 2005; Panteleyev et al., 1998b). The 

phenotype of different rhino alleles varies in terms of the severity of the wrinkling, 

possibly due to the genetic backgrounds. The skin phenotype in both Hrhr and Hrrh 

mutants has been linked to massive and premature apoptosis that leaves the dermal 

papilla stranded and unable to reinitiate induction of the epithelial strand into follicle 

formation (Panteleyev et al., 1998b). Utricles and dermal cysts filled with keratins form 

in the skin of rhino mutant mice and expand with age. The dermis becomes filled with 

cysts, causing the severe skin wrinkling (Mann, 1971; Panteleyev et al., 1998b; 

Sundberg, 1994; Sundberg and Boggess, 1998). All confirmed alleles of Hr are autosomal 

recessive and most of them have been genetically characterized.  The near naked (Hrn) is 

a semi-dominant allele at the Hr locus (Stelzner, 1983).  The homozygous Hrn/Hrn mice 

never grow their hair. Homozygotes are recognizable at 5 days of age with their thin, 

slick skin and short, curly vibrissae.  Heterozygous adults undergo repeated hair loss and 

regrowth in contrast to heterozygous hairless and rhino mice with normal hair and 

permanent fur coat. The vibrissae of Hrn/+ mice are very short, their skin is very thin, and 

wrinkles extensively with age. Both sexes are fertile, but females are poor mothers for 

breeding. The expression of all the alleles of murine Hr except Hrn is downregulated at 
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Table 2-2 Genetic mutations and phenotypes in murine hairless gene 

Alleles Mutation Location Phenotype Inheritance Reference 

Hrhr 
MLV 

insertion Intron 6 Hairless Recessive (Stoye et al., 1988) 

Hrrh R597X Exon 6 Rhino Recessive 
(Cachon-Gonzalez et al., 1999; 

Howard, 1940) 
Hrrh-J E534del Exon 5 Rhino Recessive (Cachon-Gonzalez et al., 1999) 
Hrrh-7J W292X Exon3 Rhino Recessive (Sundberg, 1994) 
Hrrh-8J K512X Exon 4 Rhino Recessive (Ahmad et al., 1998d) 
HrrhChr R467X Exon 4 Rhino Recessive (Ahmad et al., 1998c) 

HrrhY 
13 bp 

insertion Exon 16 Rhino Recessive (Panteleyev et al., 1998a) 

Hrrhbmh 
296 bp 
deletion 

Exon 19 & 
3’-UTR 

Rhino-
Bald Recessive (Brancaz et al., 2004) 

Hrrhsl W911X Exon 12 Rhino Recessive (Zhang et al., 2005) 
HrrhR R814X Exon12 Rhino Recessive Liu unpublished 
Hrba N/A N/A Bald Recessive (Garber, 1952) 

Hrrh-2J N/A N/A Rhino Recessive (Bailey and Bunker, 1973) 
Hrrh-9J N/A N/A Rhino Recessive (Sundberg and Boggess, 1998) 

HrN N/A N/A 
Near 
naked 

Semi-
Dominant (Stelzner, 1983) 

HrTg5053Mm 
Transgene 
insertion 

Intron 5 – 
Exon 8 Rhino Recessive (Jones et al., 1993) 

Hrtm1Cct Transgene Exon 8-10 Rhino Recessive (Zarach et al., 2004) 
N/A: not available 
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least 10-fold in homozygous mutant mice compared to the wild type regardless of age 

(Cachon-Gonzalez et al., 1994; Cachon-Gonzalez et al., 1999; Panteleyev et al., 1998b; 

Panteleyev et al., 1998c). 

Both Hrhr/Hrhr and Hrrh/Hrrh mutants have very low levels of Hr expression and 

start to lose their hair around 2-3 weeks age due to the disruption of the integrity of key 

functional tissue units in the hair follicle (Panteleyev et al., 2000).  This suggests that 

normal levels of Hr protein are important for hair follicle to initiate the first hair cycle 

(Panteleyev et al., 1998c) and that Hr may be involved in the control of the first hair 

follicle cycling (Panteleyev et al., 2000).  More specifically, the absence of Hr in hairless 

mice may cause dysregulation of normal, catagen-associated apoptosis and an 

impairment of cell adhesion (Panteleyev et al., 2000). 

Hr mutant mice are also found to be dramatically more susceptible to dioxin than 

the wild type mice (Sundberg, 1994).  The aryl hydrocarbon receptor (AhR), a ligand-

activated transcription factor, is shown to mediate most of the toxic effects of dioxin 

(Whitlock, 1990). This suggests that Hr may be protective against aryl hydrocarbon (Ah) 

receptor-mediated dioxin toxicity in mouse skin (Knutson and Poland, 1982).  Ornithine 

decarboxylase (ODC) is an important enzyme in the polyamine biosynthetic pathway, 

which plays an essential role in epithelial tumorogenesis (Weeks et al., 1982). 

Overexpression of ODC in the epidermis of transgenic mice causes a phenotype similar 

to hairless mutant mice (Soler et al., 1996).  The transgenic mice have a normal first hair 

cycle, but lose the hair around 2-3 weeks old (Soler et al., 1996).  The overexpression of 

ODC in the transgenic mice is first detected at day 12 (Soler et al 1996).  Interestingly, it 

is found that dioxin is able to modulate ODC activity in skin of ODC transgenic mice 

(Raunio and Pelkonen, 1983) while hairless mutant mice are more susceptible to dioxin 

in the skin. This suggests that ODC plays an important role in hair follicle cycling and 

that there might be a direct interaction between HR and AhR.  

It is also found that there might be Hr mutation-associated impairment of 

mammary gland function (Panteleyev et al., 1998b) since HR is expressed in mammary 

gland.  However, the details still remain unknown. Hr mutants also show some 

neurological phenotypes, such as altered neuronal morphology, inner ear defects, and 
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abnormal retinal cytoarchitecture (Cachon-Gonzalez et al., 1999; Garcia-Atares et al., 

1998). Hr mutants demonstrate a tendency toward skin ulceration upon minor epidermal 

trauma, suggesting a potential role for HR in the regulation of wound healing (Sundberg, 

1994). All together these findings indicate that HR is pleiotropic and plays wide roles in 

development. 

Mutations in human and related diseases 

It is shown that mutations of Hr homolog in human are related with two 

autosomal recessive diseases, including congenital alopecia universalis (AUC, OMIM 

203655) and atrichia with popular lesions (APL, OMIM 209500). Atrichia with popular 

lesions (APL, OMIM 209500) in human patients is the counterpart of the Hrhr/Hrhr in 

mice. The features of APL include papillary lesions over most of the body and almost 

complete absence of hair. Patients are born with hair that falls out shortly after birth and 

is not replaced. Malformations of the hair follicles are shown in histological studies. In 

addition to hair loss, other symptoms including concomitant mental retardation (Aita et 

al., 2000; del Castillo et al., 1974) and retardation of bone age (Kruse et al., 1999) are 

also reported in some cases. 

The mutation in human Hr was first identified as causing APL by Christiano’s 

group in 1998 (Ahmad et al., 1998a), although the missense mutation first reported was 

proved to be a single nucleotide polymorphism (Hillmer et al., 2002). A number of 

mutations in Hr responsible for causing APL have been found since 1998 (Ahmad et al., 

1998a; Ashoor et al., 2005; Bergman et al., 2005; Djabali et al., 2004; Henn et al., 2002; 

Hillmer et al., 2001; Indelman et al., 2003; John et al., 2005; Masse et al., 2005b; Paradisi 

et al., 2003; Paradisi et al., 2005; Sprecher et al., 1999a; Sprecher et al., 1998; Sprecher et 

al., 2000; Yang et al., 2005; Zlotogorski et al., 2003; Zlotogorski et al., 2002a). There are 

four different types of mutations, including nonsense mutations, missense mutations, 

deletions/insertions, and splice site mutations, in human Hr that cause APL (Ashoor et 

al., 2005) as shown in table 2-3. In addition, the APL phenotype has been shown to result 

from compound heterozygosity in Hr (Ashoor et al., 2005). Interestingly, two originally 

reported mutations were shown to be just polymorphisms by examining a larger 
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Table 2-3 Genetic mutations and phenotypes of human hairless gene.  
Mutation Location OMIM Reference 

Nonsense mutations    
R33X Exon 2 APL (Zlotogorski et al., 2002a) 

R154X Exon 2 APL (Ashoor et al., 2005) 
Q260X Exon 3 APL (Masse et al., 2005a) 
Q478X Exon 4 APL (Sprecher et al., 1999b) 
Q515X Exon 4 APL (Ashoor et al., 2005) 
R613X Exon 6 APL (Ahmad et al., 1999a) 
W699X Exon 8 APL (Masse et al., 2005a) 
Q1176X Exon 19 APL (Henn et al., 2002) 

Missense mutations    
E583V Exon 5 APL (Paradisi et al., 2003) 
C622G Exon 6 APL (Aita et al., 2000) 
N970S Exon 14 APL (Kruse et al., 1999) 

D1012N Exon 15 ALUNC (Djabali et al., 2004) 
T1022A Exon 15 APL (Ahmad et al., 1998a) 
V1056M Exon 16 APL (Zlotogorski et al., 2002b) 
V1136D Exon 18 ALUNC (Cichon et al., 1998) 

Deletions/insertions    
177del11 Exon 2 APL (Zlotogorski et al., 2003) 

189-199del Exon 2 APL (Indelman et al., 2003) 
1256delC; 1261del21 Exon 3 ALUNC (Ahmad et al., 1999d) 

2001delCCAG Exon 7 APL (Kruse et al., 1999) 
2147delC Exon 9 APL (Zlotogorski et al., 1998) 

2847-2delAG Exon 14 APL (Henn et al., 2002) 
3434delC Exon 18 APL (Sprecher et al., 1999a) 

Splice site mutations    
1557-1 G to T Intron 4 APL (Paller et al., 2003) 
IVS8+2 T to G Intron 8 APL (Paradisi et al., 2005) 
2776+1 G to A Intron 12 APL (Cichon et al., 1998) 
2776+2 insT Intron 12 APL (Paller et al., 2003) 

2847-3 C to G Intron 13 APL (Paller et al., 2003) 
APL: atrichia with papular lesions; ALUNC: alopecia universalis congenital; 

X: nonsense mutation; del: deletion; ins: insertion 
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population (Ahmad et al., 1998a; Ahmad et al., 1998b; Hillmer et al., 2001; Hillmer et 

al., 2002).  Totally 17 different Hr genetic variants in human have been reported (Hillmer 

et al., 2002; Zhang et al., 2005), including nine amino acid substitutions, one amino acid 

deletion, four silent changes, and three variants in exon-flanking intronic sequences.  

About this dissertation 

 The objective of this dissertation is to study the molecular and physiological 

mechanisms underlying hair loss in two mouse models: near naked hairless (Hrn) and 

Oak Ridge rhino-like (HrrhR) mutant mice. Several major approaches were applied in the 

dissertation, including microarray analysis, histological analysis, and electron 

microscopy, to systematically characterize these two mutants. There are two different 

primary platforms of microarray: cDNA or long oligo arrays (also referred to as spotted 

or two-color arrays) and Affymetrix arrays, which consist of short oligos synthesized in 

situ (also known as single-color arrays). The Affymetrix platform has much greater probe 

density and can be used to profile expression across the entire genome. Two-color arrays 

are printed with either long oligonucleotides (~65mers) or cDNA, and are used to detect 

the relative expression changes. Oligonucleotide microarrays representing either 15,000 

or 21,000 mouse genes are used in this dissertation. Histological analysis is a basic tool 

used in dermatological research and is widely used in this dissertation to detect 

morphological changes in hair follicles of skin due to the mutations. Scanning electron 

microscope is used to examine in fine detail the external defects in hair structure of the 

mutant mice.  

 This dissertation begins with the introduction of our research in chapter 1, 

followed by chapter 2, the background and significance of our research in the effort to 

search mutations underlying hair loss in mice models. In chapter 2, the basic information 

about hair follicle development and cycles is discussed, followed by a summary of the 

recent research with hairless gene (Hr). Chapter 3 summarizes all the materials and 

techniques used in this dissertation. Chapter 4 presents the effort in search for the genetic 

mutation in Hrn mice, while chapter 5 shows the early molecular and physiological 

alterations in Hrn mice. Chapter 6 displays the genetic basis for HrrhR mutation and the 

effort in search of the initial downstream event due to the mutation. Conclusion and 
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future works for elucidating the roles of HR are presented in Chapter 7 with a hypothesis 

about the possible roles of HR in both Hrn and HrrhR mutants.  
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Chapter 3   Experimental methods and materials used in this study 

Animals and tissue collection 

Hrn mice (Stelzner, 1983) were maintained in the ORNL mouse facility on a 

congenic BalbC/Rl background by crossing Hrn/+ males (identified phenotypically) with 

wild type BalbC/Rl females (Stelzner, 1983).  Because intercross matings of Hrn/+ 

animals on the BalbC/Rl genetic background failed to reliably yield homozygous 

offspring, Hrn/Hrn animals were produced by first outcrossing Hrn/+ males to FVB/N 

females and then intercrossing F1 Hrn/+ mice to produce the three genotypes (+/+, Hrn/+, 

and Hrn/Hrn).  Hrn/+ and Hrn/Hrn mice were identifiable by phenotype at approximately 6 

days of age by the presence of sparse or absent pelage, respectively.  

HrrhR mice arose several generations downstream of a translocation experiment.  

The male parent was a treated JH male and the female parent was an SB female.  SB 

refers to the F1 hybrid made from SEC/E x C57BL/E. The mutant was outcrossed to 

BLH F1's for stock maintenance. BLH refers to C3Hf x C57BL10a. It was maintained in 

the ORNL mouse facility by mating HrrhR/HrrhR male with HrrhR/+ female with a mixed 

strain background. HrrhR/HrrhR mice are distinguishable as early as 2 weeks of age due to 

hair loss. HrrhR/+ mice were normal and do not have hair loss compared to +/+ mice.  

At various ages, animals were euthanized by cervical dislocation, and dorsal skin 

was harvested from littermate animals of each genotype for RNA isolation and various 

histological analyses.  Dorsal skin collected for RNA extraction was harvested into 

RNALater (Ambion, Texas), refrigerated at 4°C overnight, and then stored at -80°C until 

RNA extraction was performed.  Skin harvested for histological analysis and 

immunohistochemistry was fixed in 10% neutral buffered formalin for 24-48 hours and 

then stored at room temperature in 70% ethanol.  Liver and spleen samples used for 

genomic DNA isolation were collected into liquid nitrogen and stored at -80°C. Tails and 

ear snips used for genomic DNA isolation were collected into a 1.5 ml microtube and 

stored at -20°C. 

PCR reactions and DNA sequencing of Hr 

For Hrn mutation, direct sequencing was performed with the PCR products 

amplified from both cDNA and genomic DNA templates. The full length Hr cDNA was 
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sequenced using cDNA templates prepared from skin RNA extracted from Hrn/Hrn 

animals on the BalbC/Rl / FVB/N mixed background and from C3H/HeJ and 101/Rl 

strains, the two potential strains on which the original Hrn mutation arose. cDNA was 

synthesized in reverse transcription reactions using total skin RNA reverse transcription 

reactions were performed using SuperScript II reverse transcriptase, oligo d(T) primer, 

and 2 µg of DNase I-treated total RNA according to the manufacturer’s protocol 

(Invitrogen.com).  Primers to produce overlapping amplicons for both genomic DNA and 

cDNA templates were designed using the Primer3 database (Rozen and Skaletsky, 2000).  

Primers to amplify the entire Hr cDNA were designed according to the full-length 

mRNA sequence (GenBank accession number Z32675) originally reported by Cachon-

Gonzalez, et al (1994). Melting temperature and MgCl2 concentration were optimized for 

each primer pair, and products were verified by electrophoresis in 1% agarose gels to 

confirm amplicon size and check for nonspecific products.  After optimization, PCR 

products were electrophoresed in 1% agarose gels and the specific bands were isolated 

and purified across columns (GFX PCR DNA and Gel Band Purification Kit, Amersham 

Biosciences).  Purified amplicons were sequenced bidirectionally using BigDye Version 

3.1 dye terminator kit (ABI, Foster City, CA) and analyzed on an ABI 3100 Genetic 

Analyzer. Genomic DNA from Hrn/Hrn mice was extracted from liver and spleen using a 

standard protocol (Bultman SJ, 1992). The entire Hr gene, including introns and exons, 

was sequenced from genomic DNA of Hrn/Hrn and +/+ animals, by sequencing the PCR 

products to cover the whole region. The primers for genomic DNA sequencing were 

listed in table 3-1. DNA corresponding to the genomic region between coordinates 

62324459-62349944 on mouse chromosome 14 (based on UCSC May 2004 mouse draft 

genome), including the Hr gene and 8 kb upstream of the first exon, was sequenced.  

For HrrhR, the sequencing was performed by sequencing the entire genomic region 

of Hr. Genomic DNA of HrrhR was extracted based on the method called HotSHOT 

(Truett et al., 2000). Briefly, tissue samples (ear punches, 0.2-cm tail snips) were 

collected into a 1.5 ml eppendorf microtube. The samples were lysed with 75 µl of 

alkaline lysis buffer (25mM NaOH, 0.2 mM Disodium EDTA, pH 12.0) at 95°C for 1 

hour. After heating, samples were cooled to 4°C.  Each sample was added with 75 µl  
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Table 3-1  List of primers used for Hr genomic sequencing (sequences from 5’ to 3’ end) 

Primer 

Pairs 

Sequence of Forward primers Sequence of Reverse Primers Size of 

Product 

F2/R2 ATGGCGATCAGAGGTCCTG CAAGCGAGGGAAAATTGAAC 872 

F3/R3 CGACCCACCCTAGTCTGAAA TTCAGGAAGCTGGGCATACT 871 

F4/R4 ATGAGGGCAGGAGAGTGATG AAACAGACCACGAGGACGAC 866 

F5/R5 AAAGATGGGCATGAGAGTGC GCCAGGTCTTTTTCAGCTTG 855 

F6/R6 ATCACTGACCCGTGAGAACC GTTCTCCCGCTTTCTGCTC 920 

F7/R7 CAGGGGAATCCAGTGAAGAA CGATGTACCCAAAAGGCTGT 912 

F8/R8 AGCCTTTTGGGTACATCGTG GAGTGCTGCTGGCTCTGACT 860 

F9/R9 GCTCCAGGAGTCCAGACTTG ACTAGGGGCTTCCCTCTCTG 910 

F10/R10 GCAATGGTGTGAACTTCGTG AGCCACCCTCTTAGGGACAT 953 

F11/R11 TGTCCCTAAGAGGGTGGCTA CCTCCTGTTTGCTTGGTCAT 910 

F12/R12 TGATGACCAAGCAAACAGGA TCAGCAAGCCACAAAACAAG 938 

F13/R13 TTACATGCGCACAAGTTTCC CTGCCAGGTGCCTGAGATAC 855 

F14/R14 ACCTGGCAGGCACTTAACAT GGAGAGGGAGAGAGGGAAAA 915 

F15/R15 GCATTTTGACTTTCCCCAAT ATTGTTTTGCTTGCCACCTC 924 

F16/R16 GAGGTGGCAAGCAAAACAAT AGTGTTGGGAAGGGAGAGGT 873 

F17/R17 ACCTCTCCCTTCCCAACACT TGAGACCCATCAGAGCTTCC 887 

F18/R18 GGAAGCTCTGATGGGTCTCA GGGAGCACATACAGGGACAT 757 

F19/R19 CTGTGATGTCCCTGTATGTGCT ACTCCCCTGCTAGACTCTCCTT 1016 

F20/R20 GCTAGATCCAGGTGCAGAGG TTTGGTGGTGGTGGTAGTCA 799 

F21/R21 TGACTACCACCACCACCAAA TCCCTTCAGCTAGGACCTCA 789 

F22/R22 ATGGCTGAGGTCCTAGCTGA ACCAGGTAAGCACCTGATGG 920 

F23/R23 GAGAAGAGTGGGGTGTGAGC CGGACCACACCGTCTAAGTT 950 

F24/R24 ACTGGGGAACTTAGACGGTGT TTCCGTAATCTCCACAGGTTG 804 

F25/R25 AAAGAAGGCGAATGCAGAAA TGTTCCATCACACCCAGCTA 758 
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neutralizing buffer (40 mM Tris-HCl, pH 5.0). Five to ten microliters of the final 

preparation are used per 50-µl PCR volume. The genomic region of Hr in mouse was 

sequenced with the primers designed to cover Hr DNA (listed in Table 3-1). The PCR 

reactions were performed to amplify all the fragments covering the Hr genomic DNA. 

The PCR products were then sequenced as described earlier.  

The sequences from both Hrn and HrrhR were analyzed by using a trial version of 

Chromas software provided by Technelysium Pty Ltd (Queensland, Australia) and 

compared to the public Hr sequence using two-sequence alignment in BLAST (NCBI). If 

a nucleotide change was seen in both sequences from forward and reverse primers of 

sequencing, the nucleotide change was considered as true. The sequences from either Hrn 

or HrrhR were compared with those from wild type animals to identify any nucleotide 

change. If the change was also seen in either of the founder strains C3H/HeJ or 101/Rl, 

the change was considered as a SNP and not a true change. A base pair change in the 

exon 12 was identified as a nonsense mutation in HrrhR mutant mice. However, there was 

no base pair change found for Hrn mutation in Hr gene.  

Genotyping of HrrhR mice 

After the mutation of Hr in exon 12 was identified, a pair of specific primers 

covering the DNA containing the mutation was used for genotyping of the mice. The 

sequence of the forward primer (GRHF) is 5′- CCAAGAACCTGAGGACCAGA-3′. The 

sequence of the reverse primer (GRHR) is 5′ GCCAGTGTTCCTGGAAGAGA -3′. PCR 

was performed using Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA) with 

standard protocols in an Eppendorf Mastercycler thermal cycler (Eppendorf, Westbury, 

NY).  The PCR products were isolated through electrophoresis in a 1% agarose gel with 

1X TAE buffer. The DNA was purified using GFX PCR DNA and Gel Band Purification 

kit (Amersham Biosciences Corp, Piscataway, NJ) and sequenced on both strands. The 

sequences were analyzed with Chromas software (Technelysium Pty Ltd, Queensland, 

Australia) and blasted to NCBI database directly. 

Total RNA isolation 

RNA was isolated from dorsal skin using the QIAGEN RNeasy mini RNA 

isolation system (Qiagen) according to a protocol modified for fibrous tissue supplied by 
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the manufacturer and including an optional DNase I treatment step to eliminate 

contaminating genomic DNA.  RNA quality was assessed by visualization in denaturing 

agarose gel electrophoresis and spectrophotometrically by the 260 nm/280 nm ratio of 

absorbance.  Samples were quantified spectrophotometrically based on the absorbance at 

260 nm.  Only RNA samples of high quality were used for further analysis. 

Microarray construction, labeling, hybridization and data analysis  

Two array platforms were used in these studies. Focused cDNA microarrays were 

designed and fabricated to represent genes of interest in skin and hair biology.  Plasmid 

clones for selected cDNAs were purchased from Research Genetics and amplified and 

purified according to standard protocols (Sambrook et al., 1989). cDNA inserts contained 

in plasmid DNA were verified by bi-directional sequencing using universal M13 primers 

(TIGR).  Sequences were analyzed using BLAST (NCBI).  Clones with confirmed 

identity were amplified by PCR, lyophilized, resuspended in 3X SSC, and spotted in 

triplicate onto Corning UltraGAPS slides using an SDDC-2 arrayer (Virtek).  After 

printing, slides were air-dried and the cDNAs irreversibly immobilized by UV-

crosslinking.  Spot quality was assessed by hybridization with fluorescently-labeled 

panomers according to manufacturer’s protocols (Molecular Probes). 

CompuGen Mouse OligolibraryTM 2.0 representing about 21000 mouse genes was 

purchased from CompuGen (www.compugen.com). The oligonucleotides were printed 

on Corning Ultra Gap slides by the Center for Applied Genomics (Newark, NJ).  After 

printing, slides were air-dried and the oligonucleotides were irreversibly immobilized by 

UV-crosslinking.  

Total RNA (10 µg) from dorsal skin was fluorescently labeled with either 

cyanine-3 (Cy3) or cyanine 5 (Cy5) using an indirect dye incorporation protocol (TIGR).  

Briefly, RNA was reverse transcribed using 2.0 µg of anchored oligo(dT) (T20-V-N) 

primer and SuperScriptTM II reverse transcriptase in the presence of 5-(3-aminoallyl)-

2’deoxyuridine-5’-triphosphate (AA-dUTP).  The resulting cDNA was purified using 

QIAquick PCR columns (Qiagen) with a modification to eliminate Tris from the column 

washing buffers (TIGR) and the reaction efficacy confirmed by measuring cDNA yield 

spectrophotometrically.  Purified, aminoallyl-labeled cDNA was coupled to either Cy3 or 
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Cy5 (Amersham) by incubation in the dark in a basic (pH 9.5) phosphate buffer.  

Unbound dyes were removed from cDNAs by column purification using QIAquick 

columns (Qiagen).  Dye incorporation and labeled cDNA yield were measured by 

scanning spectrophotometry and calculated from the absorbance values at 260 nm (cDNA) 

and at either 550 nm (Cy3) or 650 nm (Cy5). 

Each hybridization consisted of a pair of RNA samples from littermates. For Hrn, 

either homozygous or heterozygous mice were compared to wild type; for HrrhR, 

HrrhR/HrrhR mice were compared to HrrhR/+ mice. For each pair of animals a dye swap 

was performed to control for dye-specific bias in labeling and to provide a replicate 

hybridization for each pair of samples.  Cy3 and Cy5 labeled samples were combined in 

hybridization buffer (50% formamide, 5X SSC ad 0.1% SDS) containing 10 µg each 

mouse Cot-1 DNA and poly(dA) DNA (Invitrogen), applied to slides, coverslipped and 

hybridized to arrays overnight in a humidified chamber at 42oC according to established 

protocols (TIGR). After washing to remove nonspecifically bound probe, slides were 

scanned for Cy3 and Cy5 fluorescence using a ScanArray 4000 confocal laser scanner 

(Perkin Elmer), and fluorescent intensities were represented as TIFF images. Images 

were analyzed and median pixel fluorescence intensities collected using ImaGene 

(Biodiscovery). Data were normalized using Lowess after removing spots of poor quality 

or low expression and subtracting local background. Replicate values for each gene were 

combined and median expression values analyzed for differential expression using the 

Confidence Analyzer function available in GeneSight and a 95% confidence interval.   

The differentially expressed genes from microarray analysis were uploaded to 

DAVID 2.1 (Database for Annotation, Visualization and Integrated Discovery, 

http://david.abcc.ncifcrf.gov/main.htm) for functional annotation including gene ontology 

(GO) analysis. The differentially expressed genes with their expression alterations were 

uploaded to Ingenuity (http://www.ingenuity.com/) for pathway and network analysis, 

suggesting potential signaling pathways altered due to the mutations. 

Quantitative real time RT-PCR 

cDNA was generated from 1-5 µg of total RNA using SuperScript II reverse 

transcriptase (Invitrogen, Carlsbad, CA) and oligo(dT) primer.  All qRT-PCR reactions 
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were performed using a SmartCycler thermal cycler (Cepheid, Sunnyvale, CA), and 

software supplied by the manufacturer was used to identify threshold cycle (Ct) values.  

Expression levels of many genes were assayed using Assays-on-DemandTM pre-designed 

gene-specific primer/TaqMan probe sets and TaqMan Universal Master Mix (Applied 

Biosystems), following the manufacturer’s protocol.  Expression levels of most of the 

genes were quantified using SYBR green I detection chemistry and custom primers 

designed using the Primer3 website (Rozen S, et al., 2000).  Primers were designed to 

span at least two exons if possible and to produce amplicons 75-150 bp in size.  SYBR 

green assays were done with Hotstart ExTaq DNA polymerase (TaKaRa Mirus Bio, 

Madison, WI) with the standard protocol supplied by TaKaRa. Annealing temperatures 

and MgCl2 concentrations were optimized for each primer pair prior to quantitation, and 

products was verified by electrophoresis in ethidium bromide-stained 2% agarose gels. 

Each sample for both TaqMan and SYBR green detection systems was assayed in 

duplicate.  A standard curve was generated for each primer pair using log dilutions (1:5) 

of a pool of skin cDNA samples.   

Northern blot 

Twenty micrograms of total RNA with a volume of 15 µl were mixed with 3 µl of 

6X loading buffer (Formamide 720 µl, Formaldehyde 260 µl, 10X MOPS 160 µl, 80% 

Glycerol 100 µl, RNase-free water 80 µl). 10X MOPS buffer contains 200 mM MOPS, 

50 mM EDTA, 21 mM NaOAC, and was adjusted to pH 7.0.  Samples were denatured at 

65°C for 10 minutes, chilled on ice, and loaded onto a RNA gel (1% agarose, 1X MOPS, 

2.7% Formaldehyde, 0.5 ng/ml Ethidium Bromide). The running buffer is 1X TAE buffer 

(40 mM Tris, 1 mM EDTA, 20 mM acetic acid) containing 1X MOPS. The gel was 

electrophoresed at 4-5 Volts/cm for 5-6 hours. Gel was photographed under UV light. 

Positively charged nylon membrane (Roche Diagnostics GmbH, Mannheim, Germany) 

and transfer filter papers were equilibrated in 20X SSC buffer (3M NaCl, 0.3 M Na3-

citrate). The gel was then transferred to the nylon membrane overnight (Sambrook et al., 

1989). The membrane was then crosslinked in Stratalinker.  

The cDNA probes of Hr were generated from mouse skin total RNA by RT-PCR 

using two pair of primers covering different portions of Hr. One pair of primers is called 
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HrMF/HrMR to cover the exon 12 in Hr gene. Their sequences are HrMF: 5’-

GATTCACATGGCCTTTGCTC-3’; HrMR: 5’- CCCCACAGGCTAAGTCTCAA-3’. 

The second pair of primers is called HrF5/HrR5 to cover the sequences of Hr mRNA 

from 1728-2567 base pairs in NM_021877. The sequences of these primers are Hr-F5: 

5’-CAACGGATCCATATAGGAAGCAAGGCGGAG-3’; Hr-R5: 5’-CGCCGAATTCC- 

TCTTCTTTGATGTCCTTGGTC-3’. The blot was washed for 30 minutes in 1X SSC, 

0.1% SDS (Sodium Dodecyl Sulfate) at 65°C.  The blot was then incubated with 

hybridization buffer (0.1% SDS, 50% formamide, 5X SSC, 50 mM NaPO4, pH 6.8, 0.1% 

sodium Pyrophosphate, 5X Denhardt’s solution, 50 µg/ml sheared herring sperm DNA) 

without the probe for at least 2 hours at 42°C. 5X Denhardt’s solution contains 0.1% 

Ficoll (type 400), 0.1% polyvinylpyrrolidone, and 0.1% bovine serum albumin. The 

blotted membrane was then hybridized with [α-32P]-CTP-labeled cDNA probe in 

hybridization buffer at 42°C overnight. The membrane was washed with fresh 

hybridization buffer for 30 minutes, 2X SSC containing 0.1% SDS for 30 minutes twice, 

1X SSC containing 0.1% SDS for 30 minutes at room temperature. After the final wash 

with 0.2X SSC containing 0.1% SDS for 45 minutes at 55°C, the membrane was exposed 

to X-ray film with intensifying screens at -80°C.  

Histological analysis  

Hematoxylin and Eosin (HE) staining was done according to standard protocols 

(Prophet et al., 1992).  Von Kossa staining was used to assess mineralization of dermal 

cysts.  Sections were dewaxed, rinsed in alcohol and distilled water, and treated with 5% 

silver nitrate placed directly in front of a bright lamp for one hour.  After rinsed in 

distilled water, the sections were rinsed in 5% sodium thiosulfate for 2 minutes and 

counterstained with nuclear fast red for 1 minute.  Finally the sections were rinsed in 

distilled water, dehydrated, and mounted.  

Actively replicating cells were selectively highlighted within tissue samples by 

immunostaining with an antibody to the Ki67 antigen.  Five-micron sections were placed 

on charged slides and dehydrated.  Endogenous peroxidases were neutralized with 0.03% 

hydrogen peroxide followed by a casein-based protein block (DakoCytomation) for 

nonspecific staining blocking.  The sections were incubated with rabbit anti-human Ki-67 
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(NovaCastra Laboratories Ltd.) diluted 1:1500 for 60 minutes.  Sections without primary 

antibody served as negative controls. The Dako Envision+ HRP/DAB System 

(DakoCytomation) was used to produce localized, visible staining.  The slides were 

lightly counterstained with Mayer’s hematoxylin, dehydrated and coverslipped.  

Scanning electron microscopy 

The samples were dehydrated in a graded ethanol series, then dried in CO2 using a 

LADD Research critical point dryer. After drying the samples were mounted on sample 

supports using silver paint, and then lightly coated with gold in an SPI sputter coater.  

Samples were examined and photographed in a LEO 1525 scanning electron microscope 

(Zeiss, New York, USA) operating at 3KV.   

In situ hybridization   

A standard protocol for paraffin embedding was used and sections were cut 6 

micron in thickness using Lecia RM2135 microtome (Deerfield, IL). The transcribed 

region of mouse RefSeq NM_021877 was used for in vitro transcription reactions 

according to protocols supplied by the manufacture (Ambion, Texas). Antisense probe 

was labeled with a biotin RNA labeling mix (Roche, Germany). The in situ hybridization 

experiments were carried out according to a standard protocol with minimum 

modifications. The probe was detected by Tetramethyl-rhodamine Tyramide Signal 

Amplification System (PerkinElmer). DAPI was used for counter stain and then 

examined using Olympus BX61 microscope, and pictures were taken using a CC12 CCD 

camera (Melville, NY). 

Hematology analysis 

 Mice from 9, 13, 15, and 35 days of age were anesthetized with isoflurane in a 

drop jar. Blood was collected from retro-orbital sinus with a microhematocrit blood tube 

filled with EDTA. The collected blood sample was released into a special tube in which 

the blood sample was loaded to Cell-Dyn 3500 automated hematology analyzer (Abbott 

Laboratories, Abbott Park, IL). The analyzer measures the complete blood count, 

different parameters of red blood cells and platelets. 
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Chapter 4 The near naked hairless (Hrn) mutation disrupts hair formation  

but is not due to a mutation in the hairless gene 

Part of the results presented in Chapter 4 and 5 are being combined into a single 

manuscript (with the same title as given to this chapter), which will be submitted to 

Physiological Genomics. 

Introduction 

The mammalian hair follicle is a unique structure due to its cyclical ability to 

regress and regrow throughout the life of the animal.  The hair cycle consists of anagen, a 

growth stage, followed by orchestrated regression (catagen) and a resting phase (telogen) 

(Chase, 1954).  Catagen is demarcated by cessation of proliferation and onset of 

apoptosis in the lower portion of the hair follicle, separating the hair bulb from the dermal 

papilla (Lindner et al., 1997).  The lower follicle retracts toward the epithelial surface, 

where it remains quiescently in telogen until receiving a cue to proliferate, grow down 

towards the dermal papilla, and re-enter anagen (Stenn and Paus, 2001).  The cascade of 

signals triggering onset of anagen are poorly defined (Stenn and Paus, 1999), but the 

delicate balance necessary to maintain normal cycling is evidenced by multiple mouse 

mutations that lead to hair loss by disrupting the hair cycle (Sundberg, 1994).  Of these, 

the mostly well-characterized are mutations at the hairless (Hr) locus.  Multiple allelic 

mutations have arisen in Hr, all of which manifest in mice as an inability to regrow a 

normal coat of hair after the initial catagen stage, resulting in a progressive loss of hair 

from head-to-tail beginning in the third week of life (Brooke, 1926; Howard, 1940).  

Mouse hairless mutants fall into two general categories, hairless (Hrhr) and rhino (Hrrh), 

based on phenotypic severity.  Both classes of mutants display dermal cysts and 

wrinkling of the skin (Mann, 1971; Sundberg, 1994), but rhino mutants are characterized 

by progressively thickened and loosened skin that develops due to expansion of horn-

filled cysts in the lower dermis (Sundberg et al., 1991).  A fundamental role for Hr in the 

mammalian hair follicle is reflected in the fact that Hr mutations in sheep (Finocchiaro et 

al., 2003) and rhesus macaques (Ahmad et al., 2002) also cause a strikingly similar hair 

loss phenotype.  Moreover, multiple mutations in the orthologous human gene underlie 

various forms of congenital atrichia, including those classified as atrichia with papular 
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lesions (APL; OMIM 290500) and alopecia universalis congenital (ALUNC; OMIM 

203655) (Klein et al., 2002). While the molecular bases differ for Hr mutations 

characterized to date, all display recessive inheritance.   

The underlying Hr gene was originally cloned in mouse by virtue of an 

endogenous murine leukemia provirus that inserted into intron 6, leading to defective Hr 

splicing and a significant reduction in Hr mRNA (~ 5% of wild type) in Hrhr/Hrhr 

animals (Cachon-Gonzalez et al., 1994; Stoye et al., 1988).  The phenotypic severity of 

Hr mutations was recently linked to the level of mRNA and protein that remain, with the 

least severe allele Hrhr (HRS/J) retaining some level of both mRNA and protein; Hrrh-J, a 

rhino allele, expressing only a minor 3 kb Hr transcript; and a completely null allele (Hr-/-) 

generated by gene targeting displaying no Hr expression and the most severe skin 

wrinkling (Zarach et al., 2004).  Hr is highly conserved between mouse, rat and human, 

but orthologous genes in non-mammalian species have yet to be identified.  It encodes a 

relatively novel protein of 127 kDa that includes a single zinc finger and a jumomji C 

domain (Cachon-Gonzalez et al., 1994), a metalloenzyme-like domain implicated in 

chromatin remodeling (Balciunas and Ronne, 2000).  Its predicted role in control of gene 

expression is borne out by its demonstrated ability to function as a transcriptional 

corepressor by heterodimerization with the thyroid hormone receptor (TR) (Thompson 

and Bottcher, 1997), vitamin D receptor (VDR) (Hsieh et al., 2003) and retinoic acid-like 

orphan receptor α (ROR-α) (Moraitis et al., 2002), possibly mediated through association 

with histone deacetylases (Potter et al., 2002).  Hr is expressed in multiple tissues, with 

highest levels in developing brain and skin (Cachon-Gonzalez et al., 1994). The skin 

phenotype in Hrhr and Hrrh mutants has been linked to massive and premature apoptosis 

that leaves the dermal papilla stranded and unable to reinitiate induction of the epithelial 

strand into follicle formation (Panteleyev et al., 1998b).   

The only mutation allelic with hairless but not displaying recessive inheritance 

was first described by Stelzner in 1983 and designated near naked (Hrn).  The mutation 

arose spontaneously in the mouse colony at Oak Ridge National Laboratory, and allelism 

testing with Hrhr suggested that the two mutations resided in the same or a closely linked 

locus (Stelzner, 1983) (figure 4-1). Hrn differs from classical Hr mutations in that it  
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Figure 4-1 Schematic illustration of allelism test between Hrn/+ and Hrhr/Hrhr 

(based on the report of (Stelzner, 1983). 
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exerts its effects in a semi-dominant rather than recessive manner.  Heterozygous animals  

display a very sparse coat that undergoes some level of cyclic loss and regrowth, while 

Hrn/Hrn animals are virtually hairless. The etiology of the phenotype in Hrn mutants also 

differs markedly from that of other Hr mutants in that mice never grow a normal coat of 

hair (Stelzner, 1983). We sought to identify the molecular basis for the Hrn mutation and 

to define the alterations in skin and hair morphology that underlie hair loss.  Because Hr 

encodes a transcriptional corepressor, we also investigated the changes in skin gene 

expression that result from the Hrn mutation. We report here that despite original allelism 

tests suggesting that Hrn is an allele of Hr (Stelzner, 1983), the phenotype of these 

animals is not due to a mutation in the Hr gene.  Based on our collective results, we 

propose that the phenotype of Hrn mice results from either an as yet unidentified 

regulatory mutation in Hr, or a mutation in a closely linked gene.   

Results 

Phenotype 

Both Hrn/+ and Hrn/Hrn are first distinguishable from their wild type littermates at 

approximately 5 days of age, when the hair coat begins to appear.  Heterozygous animals 

display a sparse but uniform coat while homozygous animals exhibit a skin slick in 

appearance and are virtually devoid of hair.  The sparseness of the coat in Hrn/+ animals 

increases in severity as mice age and progress through successive hair cycles, with few 

hairs present in aged animals (figure 4-2).  Vibrissae of Hrn/Hrn are extremely short and 

wavy, while those of Hrn/+ are intermediate between Hrn/Hrn and +/+ in both length and 

texture (figure 4-3).  The hairs in both Hrn/+ and Hrn/Hrn are thinner compared to those 

in +/+ mice under the dissecting microscope with the same magnification (figure 4-3).  

There are no significant differences found between the mutants and the wild type animals 

in ear or foot or nails. The Hrn mice also displayed impaired body growth.  Both body 

weight and body length were significantly reduced in Hrn/Hrn mice beginning at 7 days of 

age. Hrn/+ displayed a similar reduction in size that was significant at some but not all 

ages measured (figure 4-4).   

HE stained sections of dorsal skin were examined in order to further define the 

morphological changes in hair follicles accompanying the gross hair loss defect in Hrn  
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(A) 13-day old mice 

 
 

(B) adult mice 

 
Figure 4-2 Phenotypes of Hrn/Hrn, Hrn/+, and +/+ mice. (A) 13-day old mice; (B) 5-week 

old mice.  
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(A) 7-day 

 
(B) 3-week     +/+                             Hrn/+                     Hrn/Hrn 

 

 

 
Figure 4-3 Comparison of phenotypes between +/+, Hrn/+, and homozygous Hrn/Hrn 

mutant mice. (A) and (B): vibrissae of Hrn/Hrn, Hrn/+, and +/+ mice at 7-day (A) and 3-

week (B) old age; (C): hair from +/+; (D): hair from Hrn/+ mutant mice; (E): hair from 

Hrn/Hrn mutant mice; (F): ear from +/+; (G): ear from Hrn/Hrn mutant mice; (H): foot 

from +/+ mice; (I): foot from Hrn/Hrn mutant mice.  
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Figure 4-4 The growth curve of Hrn/Hrn, Hrn/+, and +/+ mice based on body weight (top 

panel) and body length (bottom panel).  
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mutants. Morphological analysis began with mice at 7 days of age, the point at which the 

3 genotypes (+/+, Hrn/+ and Hrn/Hrn) are clearly phenotypically distinguishable from 

each other.  Hair follicles were regularly distributed in skin and that their abundance and 

stage of follicle cycling were similar between the three genotypes. The dermal papilla and 

the bulb region of the follicles appeared normal in terms of shape and size.  However, just 

distal to the bulb, striking changes in morphology were apparent.  At the first age 

examined (7 days), follicles of Hrn/Hrn mice appeared to undergo premature degeneration 

of the hair shaft medulla and cortex (figure 4-5).  In the majority of hair follicles, 

nucleated cells in the cortex and medulla were replaced with keratinized material.  The 

degenerative changes occurred early in the follicle, well below the bulge in the region of 

the precortex.  A mild degree of acanthosis and hyperkeratosis was also present. The 

outer root sheath appeared intact.  As expected from the gross appearance, hair follicles 

from Hrn/+ animals displayed a much more modest phenotype.  Follicles in heterozygous 

animals were intermediate between those of wild type and Hrn/Hrn. Disorganization of 

the hair follicles progressed rapidly with age. By 9 or 11 days (figure 4-6 A-D) the cortex 

and medullary regions of the hair shaft in Hrn/Hrn mice consisted almost completely of 

keratin, with loss of nucleated cells in the precortex.  By 13 or 15 days of age (figure 4-6 

E-F) the cortex, medullary, and matrix regions of hair follicle are full of cornified 

materials. Filling with keratinized materials became more severe with age. By 4 weeks of 

age (figure 4-6 G), hair shafts region were filled with keratin. The lower portion of hair 

follicle including matrix and dermal papilla were also full of keratin. By 5 weeks, keratin-

filled dermal cysts began to form from the follicle remnants (figure 4-6 H).  Cysts were 

numerous at 6 months of age and were similar to those described in Hrhr and Hrrh mice 

(Data not shown).  Staining with von Kossa indicated that some of the cysts contained 

mineralized deposits, consistent with those seen in other Hr mutants (figure 4-7). 

These histopathological changes indicated significant structural changes in the 

medullary region and inner root sheath of the hair follicle. Scanning electron microscopy 

was then used to further examine the structural changes in Hrn hair fibers and to 

determine if the cuticle was also disrupted. As expected, few hairs were present at the 

surface of Hrn/Hrn skin (figure 4-8).  Those that did emerge displayed an abnormal form,  
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Figure 4-5 Histology of 7-day old mice (Hrn/Hrn, Hrn/+, and +/+) with HE staining. (A) 

histology of 7-day +/+ mouse; (B) histology of 7-day Hrn/+ mouse; (C) histology of 7-

day Hrn/Hrn mouse.  
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Figure 4-6 Histology of 9, 11, 13, 15, 28, and 35 -day old Hrn/Hrn, Hrn/+, +/+ mice with 

HE staining. (A) histology of 9-day old +/+ mouse; (B) histology of 9-day old Hrn/+ 

mouse; (C) histology of 9-day old Hrn/Hrn mouse; (D) Histology of 11-day Hrn/Hrn mice; 

(E) Histology of 13-day Hrn/Hrn mice; (F) Histology of 15-day Hrn/Hrn mice; (G) 

Histology of 28-day Hrn/Hrn mice; (H) Histology of 35-day Hrn/Hrn mice. 
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Figure 4-7 Von Kossa staining of Hrn/Hrn, Hrn/+, +/+ mice skin. The dermal cysts in 

Hrn/Hrn are mineralized.
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Figure 4-8 Hair structure from SEM (scanning electron microscope) with the hair from 

Hrn/Hrn, Hrn/+, and +/+ mice at different ages. A, 8-day +/+ mice; B, 8-day Hrn/+ mice; 

C, 8-day Hrn/Hrn mice; D, magnified view of hair shaft of 8-day Hrn/Hrn mice; E, 5-week 

Hrn/+ mice; F, magnified view of hair shaft of 5-week Hrn/+ mice; G, 5-month Hrn/+ 

mice; H, magnified view of hair shaft of 5-month Hrn/+ mice. 
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however, the cuticle appeared normal, with regular, overlapping scales. Hair fibers of 

both 8-day and 5 week-old Hrn/+ mice exhibited an irregular contour, with variations in 

thickness spanning the entire length of the hair. Distal ends of the hair fibers were often 

curled, in contrast to the uniform shape observed in wild type mice. In addition to 

alterations in morphology, numerous follicles in 5-week and 5-month Hrn/+ mice 

displayed pili multigemini with 2 or more hair fibers emerging from the same piliary 

canal on the surface of skin. Fibers emerging from the same canal did not appear to result 

from fiber splitting, as the cuticles were intact and the ends of the fibers relatively 

uniform.  Re-examination of the H&E stained sections of 5-week Hrn/+ mice found 

several examples of pili multigemini (figure 4-9). The additional fibers did not resemble 

club hairs that had not yet been lost during telogen; rather they were positioned at a depth 

in the follicle comparable to the primary hair fiber.  In some cases, 2 follicles at the same 

level of the skin appeared to merge into a single hair canal.   

The hair fibers observed in cross sections of both Hrn/+ and Hrn/Hrn skin 

appeared to be prematurely keratinized from the earliest age examined (7 days), 

suggesting that keratinocyte differentiation was initiated prematurely in the developing 

fiber. To determine if the Hrn mutation disrupted the normal transition from proliferation 

to differentiation in the precortex region, we stained skin sections from 7 day-old Hrn/Hrn  

and +/+ mice with the proliferation marker Ki67 (figure 4-10).  Wild type displayed the 

expected gradual transition from proliferation to differentiation in matrix cells.   

Proliferation in Hrn/Hrn hair follicles, however, appeared to be reduced and the transition 

into differentiation was premature and abrupt.  In this respect, hair fibers in Hrn mutants 

resemble those found in Lanceolate mice, in which the normal pattern of keratinocyte 

differentiation is altered by a mutation in the desmoglein 4 (Dsg4) gene that disrupts 

normal cellular adhesion (Kljuic et al., 2003).   

Sequencing the Hr locus 

The near naked allele arose spontaneously in the ORNL mouse colony and was 

not directly associated with mutagenesis experiments.  Northern blots indicated that the 

Hr transcript was of similar size between Hrn and wild type animals, indicating that the 

mutation was not due to a large deletion or insertion and did not cause production of a  
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Figure 4-9 Histology of 5-week Hrn/+ mice for pili multigemini.  
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Figure 4-10 Ki-67 staining of hair follicle from +/+ and Hrn/Hrn mice 
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truncated transcript (data not shown).  The entire Hr cDNA was sequenced from skin 

cDNA templates prepared from Hrn/Hrn mice (BalbC/Rl / FVB/N mixed genetic 

background) and from both C3H/HeJ and 101/Rl mice, the two potential parental strains 

in which the original mutation occurred, and comparing it to the published Hr sequence 

(GenBank accession number Z32675).  The Hrn sequence matched perfectly to the 

published Hr sequence, demonstrating that the Hrn mutation does not lie in the Hr coding 

region.  Based on these changes in Hr gene expression, we sequenced the entire Hr 

genomic region, including the introns, 8414 bp of the 3’-UTR, and 1483 bp upstream of 

the transcription start site from Hrn/Hrn animals and compared our sequence to the public 

sequence using BLAST analysis.  The sequence from Hrn/Hrn perfectly matched that 

contained in the public database, indicating that the Hrn mutation does not lie within the  

Hr gene and is not due to a regulatory mutation in the region immediately upstream of 

transcription.  

Other genes in the region close to Hr gene on chromosome 14 were selected for 

sequencing the cDNA based on their possible roles in skin and no mutations was found 

on these genes. These genes include Dok2, FGF17, Adam7, Adam28, RAI16, Gfra2, 

Pdlim2, TNFrsf10b, Loxl2, BB150350 and BC036718. There are also two RIKEN 

cDNAs 1700020M16, and 4930506C02 differentially expressed with hair follicle cycles 

suggested by large-scale gene expression survey (Lin et al., 2004; Morris et al., 2004). 

These RIKEN cDNAs were sequenced by PCR and no mutation was found. MicroRNAs 

have recently been suggested to play important roles in different diseases including 

leukemia (Calin et al., 2002; Calin et al., 2005; Calin et al., 2004). There are two 

microRNAs close to the locus of Hr gene on mouse chromosome 14, microRNA 124a 

and 130.  The pre-microRNAs of these two microRNAs were sequenced from genomic 

DNA and no mutation was identified. All of the sequencing primers were listed in table 

4-1. This suggests that the mutation might be due to another unknown gene mutation of a 

regulatory mutation in Hr.  

The Hr gene encodes a transcriptional regulator expressed in the developing hair 

follicle (Panteleyev et al., 2000), a site in which careful coordination of gene expression 

is necessary to produce and assemble the appropriate combinations of structural fibers  
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Table 4-1 Sequencing Primers genes and transcripts in the region close to Hr gene on 
mouse chromosome 14 (sequences from 5’ to 3’ end)  

 
Genes Primers Sequences Positions Size 

LF1 AGCTTTTCTTCTGGGCAACC 
LR1 AGACCACGTGGGAATTCTTG 

53-834 782 bp 

LF2 TGTCACTGACTGCAAGCACA 
LR2 CCTGTGATGGCCTCTTTAGC 

575-1276 702 bp 

LF3 AGCTGTGGTCAGTTGTGTGC 
LR3 CAGCATTAAGCACCAGGTCA 

1031-
1803 

773 bp 

LF4 CCTGGTACTGGCATGGAAAT 
LR4 CTCCTCACTGAAGGCTCCAC 

1618-
2405 

788 bp 

LF5 GGAGAACAAGGCATCACCAT 

 
 
 
 

Lysyl oxidase-like 2 
(Loxl2) (NM_033325.1) 

LR5 TGAGTTCATGCCTGCTGTGT 
2169-
2954 

786 bp 

P2F1 AGCAACTGAAGAGGCAGGAG 
P2R1 GCTGAACCTAGGGCTGGAG 

2-693 692 bp 

P2F2 GCTCACCACTTGACCTACCC 

 
PDZ and LIM domain 2 
(Pdlim2, NM_145978) 

P2R2 CCATACGCTTTCGTGTCAAA 
571-1390 820 bp 

FGF17F1 GTTGCCGCATCAAACCTG 
FGF17R1 TCTCCCCCTGTGTTTGACA 

16-592 577 bp 

FGF17F2 AATCGCCCCAAGAAGTCTCT 
FGF17R2 TACTGGCCTCCCTGACTACG 

488-1179 692 bp 

FGF17F3 CTTCATCAAGCGCCTCTACC 

 
 

Fibroblast growth factor 
17 (Fgf17, NM_008004) 

FGF17R3 TGGTTTTATTCTGGGGCTTG 
1032-
1680 

649 bp 

T10BF1 CTGGGAGTGAGGAAATCCAG 
T10BR1 CCAAGAGAGACGAATGCACA 

29-828 800 bp 

T10BF2 ACGGGGAAGAGGAACTGACT 

Tumor necrosis factor 
receptor superfamily, 

member 10b (Tnfrsf10b, 
NM_020275) T10BR2 CATCTTCGGGGCTCTCTACA 

589-1340 752 bp 

RAI16F1 CCTGGGGAGAGCAATCTTATC 
RAI16R1 GCAATGCTGATCTCGTCTGA 

21-655 635 bp 

RAI16F2 CATAGAGGACAGCCCCCATA 
RAI16R2 CACCCTGACAAGCACAGAGA 

578-1299 722 bp 

RAI16F3 AGCCGTACAGCCTGAACCTA 
RAI16R3 CTGCCGAGTCTTAGCAGCTT 

1153-
1967 

815 bp 

RAI16F4 AGCTAGAGGATGGCCAGTGA 
RAI16R4 GGCCTGTTGTGAGGTAATGC 

1737-
2556 

820 bp 

RAI16F5 AAGGTACAGCATGGGACAGG 

 
 
 
 

Retinoic acid induced 16 
(RAI16, AK090035) 

RAI16R5 CAAATGCCAAAGTGCATTGA 
2359-
3132 

774 bp 

Dok2F1 GCACACAGAGCAAGAAACCA 
Dok2R1 TTCCCACCTCCTCTCCTTTT 

N/A 817 bp 

Dok2F2 TTACCCAGCTGTGCTTACCC 
Dok2R2 ACAGGCAGATGGCCTGTATC 

N/A 770 bp 

Dok2F3 CTTCTCCCCTTTCATGACCA 
Dok2R3 CACCAAGAAGCCAGGAAGAG 

N/A 804 bp 

Dok2F4 CTCTTCCTGGCTTCTTGGTG 
Dok2R4 ACCTTCCTCCTCGATCCACT 

N/A 924 bp 

Dok2F5 AGTGGATCGAGGAGGAAGGT 
Dok2R5 GGATCCTCCTGAATGCTGTC 

N/A 781 bp 

Dok2F6 ACACGGCAATGAGATCTTCC 

 
 
 
 
 

Downstream of tyrosine 
kinase 2 

(Dok2) Genomic DNA 
 

Dok2R6 TCTGGGAGCTAGAGGGACAA 
N/A 937 bp 
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Table 4-1 Continued  
 

Genes Primers Sequences Positions Size 
GFRA2F1 AACGCCTTCTGCCTCTTCTT 
GFRA2R1 CAGTTGGGCTTCTCCTTGTC 

13-752 740 bp 

GFRA2F2 CCTGAACGACAACTGCAAGA 
GFRA2R2 CCAAGGTCACCATCAGGAGT 

507-1387 881 bp 

GFRA2F3 AGCATGGCTGACTAGGTTGG 
GFRA2R3 CCGTCATCCAGTTCATCCTC 

Covering 
Exon 2 

665 bp 

GFRA2F4 GGGTCGTTATCATTGCTTGG 

Glial cell line derived 
neurotrophic factor 2 

(GFRA2, NM_008115) 

GFRA2R4 TCCAGTGGGCGACTGAAC 
Covering 

exon 1 
215 bp 

BB15F CAAGCAAAGATGGGAACCTC BB150350 
BB15R TGTCCCAGACTTGCTTTTCC 

N/A 95 bp 

HydF CCTCCGATCCTGTGAGAGTT BC036718 
HydR CTGCAGGGAGGTACCATGTC 

N/A 140 bp 

ADAM7F1 TGTTTCCCACAGGTATATTTTT
GA 

ADAM7R1 AAATTGACCATCCCCCAAAT 

2-695 694 bp 

ADAM7F2 AATGTCAAGGCACCCTATGC 
ADAM7R2 CAGCACTCTCCTTCCACACA 

475-1340 866 bp 

ADAM7F3 GGAAGCATCCCTGCAATAAA 
ADAM7R3 CTTCCTCACACTGGCACTCA 

1084-
1957 

874 bp 

ADAM7F4 ACGTGACCATCAAATGCAGA 
ADAM7R4 ACGGAGGATTAGCCCAGTCT 

1748-
2375 

628 bp 

ADAM7F5 TGACCGATATCCATCCCCTA 
ADAM7R5 CACCCAGTGTGTCTCCCTTT 

2180-
2931 

752 bp 

ADAM7F6 AGGCTGAGGCAGTAGGATCA 

 
 
 
 

A disintegrin and 
metalloprotease domain 
7 (Adam 7, NM-007402) 

 

ADAM7R6 AGGATGGGGGAAAAATCATC 
2759-
3426 

668 bp 

ADAM28F GTTGGAGCAGAAGCAACCTC Adam28, NM_176991 
ADAM28R GTGCAAAGGGTTCTGACGAT 

65-714 650 bp 

170F1 CTCTTGGGGACCCTGAGC 
170R1 CGCATCCCATGACTCCTATT 

5-810 806 bp 

170F2 AAAAGGAACAAGGGGCTGAG 

 
RIKEN cDNA 
1700020M16 

170R2 CCATAGCAGCTCCAGTGAGG 
723-1632 910 bp 

493F GGGGAGAGGGCAGTCATATT RIKEN cDNA 
4930506C02 493R GCATTCAGCACACAGAAACA 

688-1252 565 bp 

M320F GGCGGAAGTGACATCAAGG microRNA-320 
M320R GAGGACCGCACCTCTACTCC 

N/A 215 bp 

MR124F TCCTCCCTCTCTTCCATCCT microRNA-124a1 
MR124R TGTGCTGGGTCGATCCTT 

N/A 238 bp 

N/A: not available
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required to form potent hair fibers (Botchkarev and Kishimoto, 2003).  It is possible, 

therefore, that alterations in the expression levels of a key transcription factor could  

disrupt hair follicle gene expression and cause dystrophic hairs as seen in Hrn/Hrn mice.  

Thus, a regulatory mutation outside the Hr coding region could underlie the near naked 

phenotype. Northern blots and quantitative RT-PCR (qPCR) were used to assay levels of 

Hr expression in Hrn mutants and wild type littermates.  For these assays 7 day-old mice 

were used to represent the visual onset of the phenotype and to dissociate results from the 

secondary phenotypic changes that ensure as the phenotype progresses. Northern blot 

hybridization to a probe spanning exons 5-12 indicated that the Hrn mutation did not alter 

Hr transcript size, but that expression levels were slightly but significantly increased 

relative to +/+. Quantitative RT-PCR was used to for further determination of Hr 

expression. Hr expression in 7-day animals was significantly increased in Hrn/+ (~ 2-fold 

over +/+) and further elevated in Hrn/Hrn (~ 3-fold over +/+). However, its expression in 

5-week mice was significantly decreased in Hrn/+ (~ 3-fold over +/+) and further down in 

Hrn/Hrn (~ 7-fold over +/+). This suggests that the Hrn phenotype might be due to altered 

Hr expression. The phenotype in skin of near naked mice is marked, and expression 

levels of numerous genes (not only Hr) are likely to be altered. However, to further 

explore the upregulation of Hr expression revealed by qRT-PCR, in situ hybridization 

was applied to determine if the elevation in Hr expression was ectopically detected. As 

shown in figure 4-11, wild type mice showed strong Hr expression in matrix cells and in 

the inner and outer root sheaths, as did Hrn/+ mice.  Hr expression appeared to be 

stronger in the outer and inner root sheath of Hrn/Hrn mice. A considerable proportion of 

fibroblasts in the cavernous sinus also appeared to express Hr, unlike those in wild type 

animals. Therefore, the elevated expression of Hr seen with qPCR appears to be due to 

both ectopic expression (in fibroblasts) and to elevated expression in normal locations 

(IRS and ORS). Consistent with HE staining, the numbers of matrix cells appeared to be 

significantly reduced in Hrn/Hrn. 

Microarray expression profiling 

As part of a larger emphasis on the study of skin and hair biology, focused arrays 

were developed and fabricated, representing genes important in skin and hair biology, as  
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Figure 4-11 In situ hybridization of 7-day old mice with Hr probe. 
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well as in skin cancer. Arrays consisted of approximately 300 sequence-verified genes 

with multiple functional assignments, including epithelial differentiation, hair structure, 

cell cycle, apoptosis, and DNA repair, and of uncharacterized clones sequenced from a 

skin cDNA library. These arrays were used to identify the set of genes with altered 

expression in skin of Hrn mutants at 5 weeks of age as a next step to understanding the 

basis for the near naked phenotype. We were only able to reliably produce homozygous 

animals by outcrossing to FVB/N and then intercrossing F1 animals, and we were 

concerned that the mixed genetic background from this strategy would confound 

interpretation of microarray results. Therefore we used a 2-step strategy for differential 

expression studies, first profiling expression with microarrays in wild type and Hrn/+ 

mice congenic on Balb/cRL and then screening mice of all 3 genotypes (but on the mixed 

background) to determine the range of expression changes altered by heterozygosity and 

homozygosity, and at 2 ages (7 days and 5 weeks).  A subset of genes highlighted by 

microarrays was validated first by qRT-PCR in the same RNA samples to verify the 

microarray results. Microarrays identified many genes that were significantly 

differentially expressed (p<0.05) across a panel of 3 pairs of wild type and Hrn/+ mice 

(Table 4-2). This set of genes includes several hair keratins and keratin-associated 

proteins (KRTAPs) and S100A3, a Ca2+ binding protein expressed specifically in 

postmitotic differentiated cells of the hair follicle (Kizawa and Ito, 2005), all of which 

were downregulated in Hrn/+ mice. In addition to keratins and KRTAPs, Rab27b, a Ras-

like monomeric GTPase involved in vesicular transport, and sequestosome 1, a scaffold 

protein involved in signaling through atypical protein kinases Cs (aPKCs), were also 

downregulated in Hrn mutants. Genes with increased expression included cytochrome b 

and sequestosome 1, a scaffolding protein that interacts with multiple signaling pathways.  

Aside from the common structural functions of keratins and krtaps, differentially 

expressed genes were enriched in the GO category of cellular proliferation (BP). 

We then screened the expression levels of these genes with qRT-PCR in wild type, 

Hrn/+ and Hrn/Hrn mice at 7 days of age to identify genes differentially expressed at the 

onset of the visible phenotype as shown in table 4-2. Most of the keratins and keratin-  
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Table 4-2 Genes with altered expressions in 5-week and 7-day old mice from microarray 

analysis and real time PCR experiments  

7 days  5 weeks  
Hrn/+ vs. +/+ Hrn/Hrn vs. +/+ Hrn/+ vs. +/+  Gene Name 

   RT-PCR RT-PCR Array RT-PCR 
KRT 1-C29 -1.5 -2.4 -2.9 -8.4 

KRT 1-2 0 0 -2.3 -3.2 
KRT 2-1 1.5 2.9 N/A 9.6 
KRT2-4 N/A -2.7 -1.9 0 
KRT 2-6 0 -3.6 N/A -4.4 
KRT1-13 1.4 2.1 -1.7 0 

KRTAP3-1 N/A N/A -1.7 N/A 
KRTAP 6-1 0 -2.6 N/A -13.8 
KRTAP 6-2 0 -3.3 N/A -8.4 
KRTAP 8-1 -15.8 -22.3 -2.7 -73 
KRTAP 8-2 -2.4 -8.4 N/A -14 
KRTAP 9-1 0 -2.7 N/A -5.5 
KRTAP16-5 -1.8 -6.3 -1.8 -2.7 

KRTAP 16-10 -3.1 -17 N/A -16.2 
Ccna2 0 0 N/A -1.7 
Cct7 0 0 -3.4 -2.1 
Stat1 0 0 N/A 1.8 

Rab27b 0 0 -2.1 -3 
S100A3 -1.6 -1.9 -1.9 -4.1 
SPRR1B N/A N/A N/A -1.7 

Cytochrome B N/A N/A N/A 1.6 
Sequestosome 0 1.6 N/A 1.8 

N/A: not available; “0” means fold change < 1.5 
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associated proteins except krt2-1 are significantly downregulated in 7-day and 5-week 

mutant mice.  

The majority of keratin-associated proteins in mouse reside in 2 large gene 

clusters on chromosomes 11 and 16, and the genes in this family display highly 

coordinated patterns of expression during hair formation (Awgulewitsch, 2003; Pruett et 

al., 2004).  Accordingly it has been proposed that keratin and krtap genes within a cluster 

are regulated by locus control regions, much like what has been reported for α-globin 

genes and homeobox genes (Awgulewitsch, 2003; Pruett et al., 2004).  Because all of the 

krtaps represented on our arrays were differentially expressed in Hrn skin, and because 

disruption of krtap expression could result in aberrant hair fibers as manifested in Hrn 

mutants, we used qRT-PCR to determine if additional krtaps also exhibited altered 

expression.  We assayed expression levels of 10 additional Krtap genes, all of which 

displayed significantly lower levels of expression in Hrn mutants than in wild type (Table 

4-2).  Therefore the Hrn mutation directly or indirectly disrupts the expression levels of a 

large group of genes critical for normal hair structure. 

Examination of hair shaft formation markers 

 Recently it was found that the genetic pathways containing BMP-2, BMP-4, 

Foxn1, Msx2, Notch, and Hoxc13, might regulate hair shaft differentiation (Ma and Cai, 

2005; Mecklenburg et al., 2005). Our histological analysis suggests that hair shaft 

differentiation was significantly altered in Hrn/Hrn mutants. We used quantitative real 

time PCR to examine the expression levels in Hrn/Hrn mutants vs. +/+ mice and the 

results are shown in figure 4-12. One of the Notch effectors, Hes1 (Hairy and enhancer of 

split 1), was also examined for its gene expression level. The expression of BMP-2, Dsg4, 

GATA3, Ntc, and Msx2 was not altered. The expression of BMP-4, Noggin, and β-catenin, 

was increased by 2 fold. However, the expression levels of Hoxc13, Foxn1, Hes1, and 

hair keratins were significantly decreased by at least 2 fold compared to +/+ mice.  The 

altered expression of these genes further supports that hair shaft differentiation in Hrn/Hrn 

mutants is altered and suggests that Hrn mutation might be in the upstream of BMP-4 in 

the hair follicle signaling.  

 



www.manaraa.com

59 59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12 Schematic illustration of checkpoints for hair shaft formation in  

7-day Hrn/Hrn mice with altered expressions. Red: increased expression;  

Blue: decreased expression; Green: no expression change 
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Discussion 

A novel spontaneous mouse mutation was characterized here. This mutation was 

originally mapped to the Hr locus but results in a phenotype markedly different from 

other Hr mutants (Stelzner, 1983).  The Hrn mutation displays semi-dominant inheritance  

and prevents the initial growth of a normal coat of hair.  In both respects, it differs not 

only from mutant alleles of Hr (Ahmad et al., 1999b; Ahmad et al., 1999c) but also from 

the majority of spontaneous mutations that have been shown to alter the pelage (Irvine 

and Christiano, 2001; Lane and McLean, 2004; Porter, 2003).  

Delayed body growth in Hrn mutants was observed in both Hrn/Hrn and Hrn/+ at 

most of the ages tested with less body weight and smaller body length. This retarded 

development was first documented at 7 days of age. Hair coat does not affect mouse 

development and growth; therefore, the delayed growth in Hrn mutant mice was due to 

the mutation, not due to the loss of hair coating. Hematology analysis was done at 9, 13, 

15, and 35 days of age to determine if there were any obvious abnormalities in red and 

white blood cells, and platelets. No abnormalities were found (data not shown). 

The structure of hair fiber in Hrn/Hrn mice is altered due to the mutation as shown 

under scanning electron microscope. Pili multigemini was observed in 5-week and 5-

month old Hrn/+ mice, but not in 8-day old Hrn/+ mice, indicating that pili multigemini 

might be related with hair cycles. Histological analysis with 5-week Hrn/+ mice suggests 

that either multiple hair follicles were associated together or multiple hair shafts were 

formed in one hair follicle during the early anagen of hair cycle. It has been reported that 

a kinetic dermal papilla changes its form from single-tipped to double-tipped producing 

two hair shafts that separately grow from the same piliary canal on the skin surface 

during anagen (Whiting, 1987). This would support the idea that multiple hair shafts were 

formed in one hair follicle during anagen.  

Pili multigemini is actually very useful for hair transplantation in clinics to 

produce more hairs with a limited number of hair follicles. It was found that the entire 

hair follicle is not necessary to generate hair growth (Gho et al., 2004). Even just the 

upper part of hair follicle is enough to grow a normal hair. It was found there are two 

different sites containing stem cells (Gho et al., 2004), either of which is able to induce 

Ma et a
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normal hair growth, suggesting that two hairs could grow from one hair follicle. 

Unpublished data from GHO clinic (http://www.ghoclinic.com/) found that two or more 

hair follicles could be developed from a single hair follicle, producing two or three 

normal hairs. It was also found that three or even five hairs were developed when one or 

two upper parts of hair follicles were implanted. These observations might help explain 

the pili multigemini in 5-week and 5-month Hrn/+ mice. It could be that the Hrn mutation 

alters hair follicle stem cell populations. Alternatively, pili multigemini might be 

triggered by the separation of the upper part of the follicle from the bulge during first 

catagen. 

Based on the initial allelism testing with Hr, we began by sequencing the Hr gene, 

including all introns and exons, 1483 bp of the 3’-UTR and 8414 bp upstream to the next 

gene.  Despite Hr as an obvious candidate for hair loss in this region of mouse 

chromosome 14, no mutation was identified in any portion of Hr. Therefore we are left to 

conclude that another gene near Hr on chromosome 14 underlies the Hrn mutant 

phenotype. It is also possible that the Hrn phenotype results from a regulatory mutation in 

Hr. Hr mRNA levels were increased in Hrn/Hrn animals at 7 days of age, although the 

effect was relatively modest (3-fold).  Hr encodes a transcriptional co-repressor(Potter et 

al., 2001; Zarach et al., 2004), and even small alterations in a transcription factor can 

have significant effects on its target genes.  In the hair follicle, a very tightly coordinated 

sequence of events controls the transition from proliferation to differentiation and the 

formation of concentric hair fiber layers from a pool of precursor keratinocytes 

(Botchkarev and Kishimoto, 2003).  It has been suggested that even subtle alterations in 

the transcription factors responsible for hair formation might dramatically impact the hair 

fiber phenotype (Fuchs, 1998; Jamora et al., 2003; Rendl et al., 2005). Therefore it is 

possible that an as yet unidentified mutation that increases expression of Hr is sufficient 

to disrupt the normal pattern of expression of its target genes and lead to a dysmorphic 

hair follicle. Consistent with this possibility, all of the hair keratin and keratin associated 

protein genes with altered expression in Hrn skin were downregulated, as might be 

predicted from increased expression of a transcriptional co-repressor. By contrast, the 

vast majority of genes differentially expressed in skin of Hr null mice were upregulated, 
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including keratin 10, loricrin, filaggrin, caspase 14, calmodulin 4, and keratinocyte 

differentiation-associated protein (Zarach et al., 2004) due to the loss of transcriptional 

co-repressor.   

Transgenic mice expressing Hr under the control of a keratin 14 promoter were 

recently created to rescue the hair growth in Hr null mice (Beaudoin et al., 2005).  Under 

the control of keratin 14 promoter, Hr is mainly expressed in the outer root sheath 

including bulge region. These mice displayed shorter hairs and, like Hrn, decreased 

proliferation of matrix cells, and thicker epidermis, suggesting delayed epidermal 

differentiation.  These authors concluded that Hr normally promotes differentiation 

toward hair cell fate and suppress the differentiation into epidermis(Beaudoin et al., 

2005), which is consistent with the apparent premature differentiation and increased 

keratinization reported in Hrn hair fibers. Unlike Hrn mice, K14-rHr transgenic mice did 

not lose hair although they have shorter hair. However, the expression pattern produced 

by driving Hr with the K14 promoter does not completely reproduce endogenous HR 

expression. Overexpression was primarily in the outer root sheath, while endogenous Hr 

is expressed in the inner and outer root sheath, and the matrix. Therefore, it is still 

possible that elevated Hr expression in its normal sites could produce the Hrn phenotype.  

The profile of KRTAP expression in Hrn mice resembles that seen in transgenic 

mice overexpressing Hoxc13, in which the Krtap16 family of genes was uniformly 

downregulated.  Hoxc13 binding sites have been reported in promoter regions of Krtaps 

from the 10, 12 and 16 families, suggesting that these genes are direct transcriptional 

targets of Hoxc13 (Awgulewitsch et al. 2004; Rogers 2004 JID).  Like many Krtaps, 

Hoxc13 expression was also significantly decreased in skin of Hrn mice.  In hair follicles, 

Hoxc13 is expressed in the rapidly dividing and differentiating keratinocytes directly 

apical to the dermal papilla, where it has been suggested to control proliferation and/or 

differentiation of matrix keratinocytes as they progress into formation of layers of the 

hair fiber (Godwin and Capecchi, 1998). This expression pattern overlaps the region of 

the initial morphological changes in Hrn follicles, and the putative function of Hoxc13 is 

consistent with the apparent disruption of the proliferation-differentiation transition in 

Hrn mutants. These collective findings place the Hrn gene upstream of Hoxc13.   
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The hair loss phenotype of Hrn mice appears to be due to a striking and premature 

increase in keratinocyte differentiation that occurs very early in hair fiber development.  

The early increase in differentiation is paralleled by decreased proliferation of matrix 

cells, suggesting that the underlying mutation alters the signaling mechanism that 

normally guides a gradual transition to differentiation and keratinization of the hair fiber. 

In this respect, hair of Hrn mutants resembles that of Dsg4 mutants (Kljuic et al., 2003).  

Loss of Dsg4 disrupted normal intercellular adhesion in the medulla and inner root sheath, 

leading to premature, abnormal and rapid keratinization of hair fibers (Kljuic et al., 2003).  

In addition, Dsg4 mutants also displayed downregulation of Hoxc13 and hHb2 and hHa4 

keratins. Dsg4 gene is upstream of Hoxc13. The expression of Dsg4 gene in Hrn/Hrn mice 

was examined with real time PCR and no difference was found between Hrn/Hrn and +/+ 

mice, suggesting no direct involvement of Dsg4 in Hrn mutant mice.  

Members of the TGF-β super family including BMP-2 and BMP-4 have been 

implicated in the induction and progression of various stages of the hair follicle cycle. 

BMP-2 and -4 are expressed in the hair shaft precursors, i.e. the precortical matrix, and 

dermal papilla, and regulate hair follicle cycling. Ectopic expression of BMP-4 in the 

outer root sheath of hair and whisker follicles inhibits hair matrix proliferation and 

accelerates the differentiation program in the outer root sheath (Blessing et al., 1993). 

Increased expression of BMP-4 in Hrn/Hrn mutants is consistent with the decreased 

proliferation in the precortex and matrix region shown in Ki-67 staining. The expression 

pattern of cytokeratins was also disturbed in some hair follicles (Blessing et al., 1993), 

which was also present in Hrn mutants. Increased expression of BMP-4 suggests its direct 

involvement in Hrn mutant mice. Recently it was found that Hr triggers reactivation of 

hair growth by repressing Wise, a modulator of Wnt signaling, and promoting Wnt 

signaling (Beaudoin et al., 2005). Accordingly, if Hrn is a pro-regulatory mutation in Hr, 

Wise expression should be repressed in Hrn/Hrn relative to +/+. However, we failed to 

detect changes of the expression of Wise in skin of 7-day old Hrn/Hrn mice by 

quantitative real time PCR.  

Mouse models are usually used to study human diseases and Hrn may be a novel 

model for a relative rare human hair syndrome. The only human hair syndrome (other 
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than those due to known mutations in Hr) that maps to the same genomic region as Hrn is 

Marie Unna hereditary hypotrichosis (MUHH) (Cichon et al., 2000; Green et al., 2003). 

MUHH is a rare disorder characterized by coarsely textured hair that is progressively lost 

with age, beginning in early adulthood, with no other obvious phenotypic consequences 

(Roberts et al., 1999).  SEM images of hair fibers from MUHH patients revealed a 

longitudinal groove and an irregular form (Kim et al., 2001), similar to that seen in 8-day 

Hrn/Hrn mice (figure 4-13).  For both models, mutations within the HR coding region 

have been excluded as the cause of the hair phenotype (Cichon et al., 2000; He et al., 

2004; Lefevre et al., 2000; van Steensel et al., 1999).  Recent studies even suggest that 

the phenotypes of MUHH are due to mutations in other or multiple loci in the human 

genome (Yan et al., 2004; Yang et al., 2005). This might be true with MUHH or due to 

the difficulties to distinguish MUHH patients from other similar diseases in clinics 

(Green et al., 2003). It is possible that mutations in a homologous gene underlie these two 

models, or that they are both due to a regulatory mutation in Hr. MUHH has been 

described as autosomal dominant (Argenziano et al., 1999), while Hrn is semi-dominant 

(Stelzner, 1983).  However, given the low incidence of MUHH and the relatively small 

number of affected individuals within the population, it is possible that this disorder is 

also semi-dominant and that individuals homozygous for the underlying mutation would 

display a much more severe phenotype.    
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   (A)                                                     (B) 

Figure 4-13 Longitudinal grooving in hairs of MUHH patients and 8-day Hrn/Hrn mice 

through scanning electron microscopy. (A) hair from MUHH patients (Kim et al., 2001); 

(B) hair from 8-day old Hrn/Hrn mice.  
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Chapter 5 Early molecular and histological alterations in Hrn mice 

 The data from mice at 0-5 days of age, included in this chapter, are being drafted 

into a manuscript that will focus on gene regulatory networks that are altered by Hrn.  

Introduction 

The Hrn mutation first manifests itself at postnatal day 6-7 as a sparse (Hrn/+) or 

virtually absent (Hrn/Hrn) coat of hair. In many cases, homozygous mice can be 

distinguished from the other two genotypes at 4-5 day by their shiny skin, smaller body 

size and reduced vibrissae. Therefore we are certain that Hrn has effects on the phenotype 

much earlier than postnatal day 7. In this chapter, we describe our efforts to identify the 

earliest phenotype of gene expression changes that result from the Hrn mutation. Without 

having identified the mutation, we did not have access to a strategy for genotyping mixed 

litters at early ages. On the BALB/C background, litter sizes are very small (~3-5) and 

mating between homozygous parents did not produce offspring. However, we outcrossed 

Hrn to FVB/N mice and litter sizes were large (up to 13). Mating of Hrn/Hrn parents 

produced offspring, although the females still had difficulty nursing the pups. We were 

able to cross-foster one of three such litters (n=10) onto a DBA/B6 mom, who cared for 

the offspring normally. From this litter we obtained mice that allowed us to examine the 

very early histological and gene expression changes at Hrn mutants. We present the 

results from postnatal days 0, 1, 3, and 7 in this chapter. 

Results 

Histological analysis of young mutant mice 

 Histological analysis plays an important role in characterizing the mouse mutant. 

Dorsal skins from 0-, 1-, and 3-day old +/+ and Hrn/Hrn mice were fixed in 10% neutral 

buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin & 

eosin (HE) (figure 5-1). Hair follicles in wild type mice at day 0 after birth appear normal 

with obvious inner root sheath, outer root sheath, dermal papilla, and cortex region. There 

is no hair shaft formed at this time (It would form and grow out from the piliary canal). 

Epidermis is normal with cornified layers. The keratinization zone in +/+ hair follicles is 

organized and located in the top of pre-cortex region. Hair follicles at 0-day Hrn/Hrn 

mutant mice are structurally normal with inner root sheath, outer root  
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Figure 5-1 Histology of 0-, 1-, and 3-day Hrn/Hrn and +/+ mice with HE staining. (A) 0 

day +/+ mice; (B) 0 day Hrn/Hrn mice; (C) 1 day +/+ mice skin; (D) 1 day Hrn/Hrn mice 

skin; (E) Histology of 3-day old +/+ mice; (F) Histology of 3-day old Hrn/Hrn mice. 

 

(C) 

(D) 

(A) (B) 

(E) (F)



www.manaraa.com

68 68

sheath, and dermal papilla. Even at this early stage, hyperkeratosis is apparent in and 

apical to the pre-cortex, indicating that premature keratinization is one of (or the) earliest 

morphological change in Hrn follicle. The keratinization in hair follicles of 0-day Hrn/Hrn 

mice was not localized to the keratinization zone seen in 0-day +/+ mice; instead it occurs 

in a wider region and is disorganized. One day later, in +/+ mice, the keratinocytes in the 

pre-cortex region begin to differentiate and form a line of nuclei of keratinocytes, which 

will later form the hair shaft. However in 1-day old Hrn/Hrn mice, the hair follicle is 

increasingly disorganized. There is increased keratinization inside the hair follicles. There 

are no formations of lined nuclei of differentiated keratinocytes. Instead, this region is 

full of cornified materials. In addition, there are still subtle but noticeable cornified 

materials in the pre-cortex region. By the age of 3 days, the hair follicles in Hrn/Hrn mice 

are filled with more cornified materials in the region where a normal hair shaft forms in 

+/+ mice. The keratinization in the pre-cortex region becomes more significant. These 

findings indicate that hyperkeratosis begins immediately after birth (or perhaps even 

before birth) and becomes more severe with age. 

Microarray analysis with 0-day mutant mice 

 What causes hyperkeratosis in Hrn/Hrn mice is still unknown since the underlying 

genetic mutation remains unclear. However, the genes involved into the hyperkeratosis 

might be studied through genome-wide gene expression assays and provide a clue to the 

basis for the Hrn phenotype. Therefore, microarray analysis was applied to 0-day old 

Hrn/Hrn and +/+ mice to identify the earliest changes in gene expression due to the 

unknown Hrn mutation. About 60 genes were identified as differentially expressed in 

Hrn/Hrn mice, based on a 99% confidence level (table 5-1). Amongst these sixty genes, 

four genes are related with immunoglobin or T cell receptor, which means some sort of 

altered immunological function.  

The differentially expressed genes were uploaded to DAVID 2.1 (Database for 

Annotation, Visualization and Integrated Discovery) (http://david.abcc.ncifcrf.gov/) 

(Dennis et al., 2003) for functional annotation including Gene Ontology (GO) analysis. It 

was shown that several categories were enriched, including odorant binding, tryptase 

activity, extracellular space, transporter activity, phospholipid binding (table 5-2). It was 
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Table 5-1 Differentially expressed genes from the microarray analysis with 0-day 

Hrn/Hrn mice compared to wild type mice. The data was analyzed with ImaGene and 

GeneSight based on 99% confidence interval and fold change of 1.6 (20.7). 

Gene ID Gene Name 
Fold 

change
M16355 major urinary protein I (MUP I) -8.7 
M16356 major urinary protein II (MUP II) -8.3 
M16357 major urinary protein III (MUP III) -6.6 

AK020171 
12 days embryo male wolffian duct includes surrounding 

region cDNA -6.6 
NM_009947 copine 6 (Cpne6) -4.4 

M16360 major urinary protein V (MUP V) -4.1 
M29241 U5 small nuclear RNA, clone 1 -3.4 
J03299 liver transferring -3.2 
M17763 major urinary protein pseudogene (G2-4), exon 1 -3.1 
M27608 major urinary protein -3.0 
M23016 Transferring segment 4_ -2.8 

NM_007606 carbonic anhydrase 3 (Car3) -2.8 
NM_008648 major urinary protein 4 (Mup4) -2.7 
NM_026358 RIKEN cDNA 4930583H14 gene (4930583H14Rik) -2.6 
NM_020281 melanoma antigen, family A, 7 (Magea7) -2.5 
NM_016792 thioredoxin-like (32kD) (Txnl) -2.5 
AB037540 CYP4F14 mRNA for leukotriene B4 omega-hydroxylase -2.5 
AK006259 1700023A20Rik, RIKEN cDNA 1700023A20 gene -2.4 
AK020601 9530049O05Rik, RIKEN cDNA 9530049O05 gene -2.4 

M12449 cell adhesion molecule (CAM) uvomorulin -2.3 
NM_013805 claudin 5 (Cldn5) 2.3 
NM_009265 small proline-rich protein 1B (Sprr1b) 2.4 

BC004653 
SWI/SNF related, matrix associated, actin dependent regulator 

of chromatin, subfamily a, member 2 (Smarca2) 2.4 
AF375885 protein o-fucosyltransferase (Pofut1) 2.4 
AF108215 5_-AMP-activated protein kinase beta subunit 2.4 
AK019736 4930544I03Rik, RIKEN cDNA 4930544I03 gene 2.5 

NM_008476 Keratin complex 2, gene 6a (Krt2-6a) 2.5 
NM_013473 annexin A8 (Anxa8) 2.5 
AK021197 C330013E15Rik, RIKEN cDNA C330013E15 gene 2.6 

NM_013808 cysteine-rich protein 3 (Csrp3) 2.6 
NM_020591 RIKEN cDNA A030009H04 gene (A030009H04Rik) 2.6 

AK014850 

hypothetical Leucine-rich repeat/bZIP (Basic-leucine zipper) 
transcription factor family/Leucine-rich repeat, typical subtype 

containing protein 2.6 
AK004778 Transmembrane protein 43 (Tmem43) 2.6 
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Table 5-1 continued 
 

Gene ID Gene Name 
Fold 

change

AK004796 
weakly similar to pol polyprotein (fragment) [simian sarcoma-

associated virus, SSAV] 2.7 
NM_013545 hemopoietic cell phosphatase (Hcph) 2.8 
NM_011363 SH2-B PH domain containing signaling mediator 1 (Sh2bpsm1) 2.8 
NM_010789 myeloid ecotropic viral integration site 1 (Meis1) 2.9 
AK017885 Ras homolog gene family, member H (Rhoh) 3.0 
AK005497 1600019K03Rik, RIKEN cDNA 1600019K03 gene 3.2 
AK015086 spermidine/spermine N1-acetyl transferase-like 1 (Satl1) 3.3 

NM_011607 tenascin C (Tnc) 3.4 

AL136158 
dM538M10.5 (novel 7 transmembrane receptor (olfactory 

receptor like) protein similar to human HS6M1-28) 3.4 
L00653 mast cell protease-7 (Mcpt7) 3.6 

AK017047 4933433N18Rik, RIKEN cDNA 4933433N18 gene 4.2 
AK009746 Kaptin (actin-binding protein) 4.8 

NM_010781 mast cell protease 6 (Mcpt6) 4.9 
L04961 nuclear-localized inactive X-specific transcript (Xist) 5.8 

AK009793 2310043P16Rik, RIKEN cDNA 2310043P16 gene 19.7 
AF242214 38C2 immunoglobulin light chain variable domain -2.7 

V00808 
Part of the murine gene for kappa-immunoglobulin leader 

peptide and variable part (cell line MOPC41). -2.5 

AF318436 
clone 490.08 immunoglobulin heavy chain variable region 

gene 2.7 
Z12222 rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ). 3.0 
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Table 5-2 Functional annotation for the microarray data from 0-day Hrn/Hrn mice  

Enriched Categories Enriched Genes 
M16355 major urinary protein 1 
M16356 major urinary protein 2 

M16357,M27608 major urinary protein 3 
NM_008648 major urinary protein 4 

ODORANT 
BINDING 

 
 M16360 major urinary protein 5 

NM_010781 mast cell protease 6 TRYPTASE 
ACTIVITY L00653 mast cell protease 7 

NM_013805 claudin 5 

AB037540 
cytochrome P450, family 4, 
subfamily f, polypeptide 14 

NM_008648 major urinary protein 4 
M16360 major urinary protein 5 

NM_010781 mast cell protease 6 
L00653 mast cell protease 7 

AF375885 
protein O-fucosyltransferase 

1 
NM_011607 tenascin C 

EXTRACELLULAR 
SPACE 

 
 
 
 
 
 J03299,M23016 transferrin 

M16355 major urinary protein 1 
M16356 major urinary protein 2 

M16357,M27608 major urinary protein 3 
NM_008648 major urinary protein 4 

M16360 major urinary protein 5 

TRANSPORTER 
ACTIVITY 

 
 
 NM_016792 thioredoxin-like 1 

NM_013473 annexin A8 PHOSPHOLIPID 
BINDING NM_009947 copine VI 
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very surprised to notice that many proteins called major urinary proteins 1-5 were 

downregulated significantly. These proteins are related with odorant binding and 

transport of small molecules. 

 Microarray analysis with 7-day mice 

Seven-day old homozygous and heterozygous mutant mice were distinguished 

phenotypically from wild type mice. It was found in the previous chapter that premature 

keratinization occurred in the pre-cortex region of hair follicles in both Hrn/Hrn and Hrn/+ 

mice. As an additional step to catch the very early molecular changes in Hrn/Hrn mutant 

mice, microarray analysis was done in Hrn/Hrn and +/+ mice with slides containing about 

21,000 (22k) mouse genes and with slides containing about 15,000 (15k) mouse genes 

(15k is a subset of 22k). It was found that about 130 genes were differentially expressed 

in Hrn/Hrn mice compared to wild type mice (listed in table 5-3). Most of the 

differentially expressed genes in table 5-1 were downregulated and only 12 genes, 10% 

of the total genes were upregulated. Expression of Hr in 7-day old Hrn/Hrn mice was 

increased by 2-3 fold compared to wild type mice by real time PCR earlier. Since Hr has 

been shown to be a transcriptional co-repressor (Potter et al., 2001; Zarach et al., 2004), it 

would be expected that increased expression of Hr, even just 2-3 fold, would decrease 

expression of genes that are Hr targets. This might help to explain why most of the 

differentially expressed genes were upregulated. This might suggest that the Hrn mutation 

could be related to a regulatory mutation in Hr gene. 

It was noticed that many genes related with immune function were differentially 

expressed from the microarray analysis (table 5-4). Most of these genes are related with 

either immunoglobin or T cell receptor (including both α and β chain). All mice were 

maintained in a SPF (specific-pathogen-free) facility, so these changes are not due to 

dermal pathogens. Some forms of alopecia areata have been linked to autoimmune type 

changes. Therefore, it is possible that differential expression of these immune-related 

genes play some role in hair loss in Hrn.  

The differentially expressed genes were uploaded to DAVID 2.1 for functional 

annotation including GO analysis. One of the features of this program is that it can 

generate clusters of genes based on their cytobands in the genome. The program 
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Table 5-3 Differentially expressed genes from microarray analysis of 7-day old Hrn/Hrn 

mice compared with +/+ mice. The data was analyzed with ImaGene and GeneSight 

from BioDiscovery based on 99% confidence interval and fold change of 1.6. 

Gene ID Gene name Fold change 
NM_025602 DNA segment, Chr 10, ERATO Doi 718, expressed -4.2 

X75650 keratin, hair, acidic, 3B -4.1 
D89901 keratin associated protein 6-3 -4.1 

NM_011199 Parathyroid hormone receptor 2 -4.0 
NM_008124 gap junction membrane channel protein beta 1 -3.9 
NM_028333 angiopoietin-like 1 -3.7 
NM_008177 gastrin releasing peptide receptor -3.7 
BC006914 leucine zipper domain protein -3.6 
AK017244 trichohyalin-like 1 -3.6 

NM_019400 rabaptin, RAB GTPase binding effector protein 1 -3.4 
NM_023907 forkhead box I1 -3.4 
AK021201 protein kinase C binding protein 1 -3.4 
AK002671 protein phosphatase 1, regulatory (inhibitor) subunit 2 -3.3 
AK021005 AT rich interactive domain 1B (Swi1 like) -3.3 
AK013609 zinc finger, DHHC domain containing 4 -3.3 

AK021149 
potassium voltage-gated channel, subfamily H (eag-related), 

member 3 -3.3 
NM_025562 tetratricopeptide repeat domain 11 -3.2 

D86424 keratin associated protein 3-1 -3.2 
NM_008536 transmembrane 4 superfamily member 1 -3.1 
AK020505 early B-cell factor 2 -3.1 
AK017895 SET domain and mariner transposase fusion gene -3.1 
AK014721 ATPase, H+ transporting, V0 subunit D, isoform 2 -3.1 

NM_008237 hairy and enhancer of split 3 (Drosophila) -3.1 
AB031959 solute carrier organic anion transporter family, member 1b2 -3.1 

U46027 CREB transcription factor, novel spliced form -3.1 
NM_019960 heat shock protein 3 -3.0 

X99143 keratin, hair, basic, 6 (monilethrix) -3.0 
NM_009254 serine (or cysteine) proteinase inhibitor, clade B, member 6a -3.0 
NM_009294 syntaxin 4A (placental) -2.9 
AF345291 keratin associated protein 16-1 -2.9 

NM_008215 hyaluronan synthase1 -2.9 
NM_015756 Shroom -2.9 
AL021127 centrin 2 -2.9 

NM_018815 nucleoporin 210 -2.9 
M15525 laminin B1 subunit 1 -2.9 

AK019761 GLIS family zinc finger 1 -2.8 

BC013550 
TAF5-like RNA polymerase II, p300/CBP-associated factor 

(PCAF)-associated factor -2.8 
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Table 5-3 Continued 
 

Gene ID Gene name Fold change 
NM_010676 keratin associated protein 8-2 -2.8 
AK011693 ring finger protein 157 -2.8 

NM_010670 keratin associated protein 12-1 -2.8 

U50960 
clone TSAP2 p53-induced apoptosis differentially expressed 

mRNA sequence. -2.8 
NM_008891 Pinin -2.8 
NM_026402 APG3 autophagy 3-like (S. cerevisiae) -2.8 
NM_010561 interleukin enhancer binding factor 3 -2.8 
NM_009010 RAD23a homolog (S. cerevisiae) -2.8 
AK009447 vacuolar protein sorting 24 (yeast) -2.7 

NM_008412 Involucrin -2.7 
BC002226 hook homolog 2 (Drosophila) -2.7 

NM_008579 meiosis expressed gene 1 -2.7 
BC012520 pantothenate kinase 4 -2.7 

NM_026320 interleukin enhancer binding factor 2 -2.7 
D30748 protein tyrosine phosphatase, non-receptor type 15 -2.7 

NM_016716 cullin 3 -2.7 
AK005136 phosphatase and actin regulator 3 -2.7 
AK003884 protein phosphatase 1F (PP2C domain containing) -2.7 
AF340231 EGL nine homolog 2 (C. elegans) -2.7 

NM_009063 regulator of G-protein signaling 5 -2.7 
NM_008838 phosphatidylinositol glycan, class F -2.7 
NM_010885 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2 -2.7 
AF357392 t-complex protein 1 -2.7 

NM_007478 ADP-ribosylation factor 3 -2.7 
AK011461 BTB (POZ) domain containing 4 -2.7 
AK007207 myosin, light polypeptide kinase -2.7 

NM_016857 exocyst complex component 7 -2.7 
AF418208 docking protein 5 -2.7 

L09600 nuclear factor, erythroid derived 2 -2.7 
BC005669 expressed sequence R74862 -2.6 

NM_008904 
peroxisome proliferative activated receptor, gamma, 

coactivator 1 alpha -2.6 
AK012212 Procollagen, type XVI, alpha 1 -2.6 
AY044153 histamine receptor H 3 -2.6 

NM_010807 MARCKS-like protein -2.6 
NM_007994 fructose bisphosphatase 2 -2.6 

AK017747 
SMC2 structural maintenance of chromosomes 2-like 1 

(yeast) -2.6 
NM_031872 taste receptor, type 1, member 3 (Tas1r3) -2.6 
BC011407 golgi autoantigen, golgin subfamily a, 2 -2.6 

NM_007520 BTB and CNC homology 1 -2.6 
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Table 5-3 Continued 
 

Gene ID Gene name Fold change 
AK018152 KH-type splicing regulatory protein -2.6 

M27134 MHC class I H-2K1-k pseudogene -2.6 
AF166265 glucagon-like peptide 2 receptor -2.6 

NM_011104 protein kinase C, epsilon -2.6 
S37491 Angiotensin receptor 1b -2.6 

S43865 
protein phosphatase 3, regulatory subunit B, alpha isoform 

(calcineurin B, type II) -2.6 
AF053628 D3Mm3e (D3Mm3e) -2.5 

NM_007526 BarH-like homeobox 1 -2.5 
AK004406 MAF1 homolog -2.5 

NM_021789 trafficking protein particle complex 4 -2.5 
NM_026924 zinc finger protein 339 -2.5 
AF357419 RNA, U68 small nucleolar -2.5 

NM_009446 Tubulin, alpha 7 -2.5 
NM_023136 thymidylate kinase (Tmk) -2.5 

AK018638 
diptheria toxin resistance protein required for diphthamide 

biosynthesis (Saccharomyces)-like 2 -2.5 
BC006661 debranching enzyme homolog 1 (S. cerevisiae) -2.5 
AK012914 Leucine rich repeat protein 1, neuronal -2.5 

NM_010919 NK2 transcription factor related, locus 2 (Drosophila) -2.5 
L10370 neurofibromatosis 1 -2.5 

NM_008762 olfactory receptor 15 -2.5 
NM_025681 limb expression 1 homolog (chicken) -2.5 
NM_007423 Alpha fetoprotein -2.5 
NM_010634 fatty acid binding protein 5, epidermal -2.5 
NM_009229 syntrophin, basic 2 -2.5 
BC004738 Similar to dual specificity phosphatase 9, clone MGC -2.5 

NM_015741 keratin associated protein 9-1 -2.5 
AK006697 methionine sulfoxide reductase A -2.5 

NM_009282 stromal antigen 1 -2.4 
AL133159 olfactory receptor 107 -2.4 

NM_011062 3-phosphoinositide dependent protein kinase-1 -2.4 
AB041350 procollagen, type IV, alpha 5 -2.4 
M18589 pseudo-kallikrein gene, exon 2, clone mGK-10._ -2.4 

NM_007654 CD72 antigen -2.4 
NM_009501 ventral anterior homeobox containing gene 1 -2.4 
NM_009396 tumor necrosis factor, alpha-induced protein 2 -2.4 
NM_010659 keratin complex 1, acidic, gene 1 -2.4 
NM_008553 achaete-scute complex homolog-like 1 (Drosophila) -2.4 
NM_015757 protocadherin 13 (Pcdh13) -2.4 
NM_007914 ets homologous factor -2.4 
AJ293592 Laminin, alpha 3 -2.4 
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Table 5-3 Continued 
 

Gene ID Gene name Fold change 
NM_013589 latent transforming growth factor beta binding protein 2 -2.4 

V00830 keratin complex 1, acidic, gene 10 2.2 
NM_008445 kinesin family member 3C 2.4 
NM_013459 adipsin 2.4 
AK006506 Enolase 3, beta muscle 2.5 
AK019689 Unc-84 homolog A (C. elegans) 2.5 
AK013576 brain-specific angiogenesis inhibitor 3 2.5 

NM_013541 Glutathione S-transferase, pi 1 2.8 
AB011019 EGF-like-domain, multiple 9 3.1 
AK010477 polymerase (DNA-directed), delta 4 3.4 

NM_019916 T-cell leukemia, homeobox 3 -2.4 

AL513354 
DNA segment, Chr 15, Brigham & Women's Genetics 0669 

expressed 3.5 
AK011423 glucosamine (N-acetyl)-6-sulfatase 5.1 

NM_025358 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 10.8 
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Table 5-4 Differentially expressed Ig- or TCR- related genes in 7-day Hrn/Hrn mice 

compared with +/+ mice. Microarray data was analyzed with ImaGene and GeneSight 

from BioDiscovery based on 99% confidence interval and fold change of 1.6. 

Gene ID Gene name Fold change 
M36743 immunoglobulin heavy chain 6 (heavy chain of IgM) -3.8 

U55578 
anti-DNA immunoglobulin light chain IgM mRNA, antibody 

363p.193 -3.5 
U07879 T cell receptor alpha chain AV10S10 precursor -3.4 

AF131134 immunoglobulin kappa light chain variable region gene -3.3 
S74556 Ig VH_rheumatoid factor RF1-7M _clone RF1-7M -3.1 
L41881 immunoglobulin kappa chain -3.1 
X03380 mRNA for GAT (HP9) anti-idiotypic Ab2 Ig heavy chain -3.0 
X66458 IG heavy chain V region (7F2). -2.9 
Z12199 rearranged T-cell receptor beta chain Vbeta8 repertoire -2.9 
U96685 immunoglobulin-like receptor PIRA4 (6M7) -2.8 
U26780 T cell receptor Va15/Ja35 alpha chain mRNA, isolate 726-1 -2.7 
U26799 T cell receptor Va8/Ja47 alpha chain mRNA, isolate 628-23 -2.7 
X55826 T-cell receptor alpha-chain (clone 14.12). -2.6 

AJ222596 similar to Ig heavy-chain V region precursor -2.5 
X06530 Ig active L-chain(k) V-region -2.4 
M20465 Ig rearranged kappa chain mRNA V-region (VH11-JK5) N4 -2.4 

AF012185 T-cell receptor alpha chain (TCRA) -2.4 
AF041952 infected mouse A seq 4, day 14, T cell receptor beta chain 2.9 
AF041922 infected mouse A seq 6, day 10, T cell receptor beta chain 3.1 
AF041935 infected mouse B seq 8, day 10, T cell receptor beta chain 3.3 
AF041918 infected mouse A seq 2, day 10, T cell receptor beta chain 3.4 
AF041950 infected mouse A seq 2, day 14, T cell receptor beta chain 3.6 
AF041969 infected mouse C seq 4, day 14, T cell receptor beta chain 3.6 
AF041962 infected mouse B seq 5, day 14, T cell receptor beta chain 3.9 
AF041971 infected mouse C seq 6, day 14, T cell receptor beta chain 4.0 
AF041923 infected mouse A seq 7, day 10, T cell receptor beta chain 4.6 

U86728 T-cell receptor alpha V region t1g5 8.8 
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generated five gene clusters according to their positions in mouse genome (table 5-5). 

These five significant cytobands are on 5 different chromosomes, 2H4, 5G1, 11D, 16A1, 

and 17A3.1. Each cluster contains at least 2 different genes with differential expression.  

Cytoband clusters of 16A1 and 11D consist of a few keratins and/or keratin-associated 

proteins. These gene clusters might suggest that the expressions of the genes in each 

cluster are regulated in the same or similar pattern, or by the same transcriptional factors, 

in Hrn/Hrn mutant mice. 

 Functional annotation analysis suggests that there are several categories 

significantly enriched in Hrn/Hrn mutant mice compared to +/+ mice at 7-day after birth 

(table 5-6). These enriched categories include coiled coil, cytoskeleton, keratins, 

extracellular matrix structural constituents, calcium signaling pathway, calcium binding, 

transcription regulation, basement membrane, protein phosphatase inhibitor, and basic-

leucine zipper transcription factor. Most of these enriched categories are closely related 

with hair follicle development and hair cycles. For example, categories of coiled coil, 

cytoskeleton, keratins, and extracellular matrix structural constituents are directly related 

with hair growth. Calcium binding and calcium signaling pathway are very critical to 

regulate the basic events such as regulation of transcription and keratinocyte 

differentiation. The enriched categories of transcription regulation and basic-leucine 

zipper transcription factor suggest that the transcriptional regulation in Hrn/Hrn mutant 

mice was systematically regulated by many different transcriptional factors. The 

functional annotation of microarray data suggests the possible effects of Hrn mutation and 

the possible functions of unknown mutated gene for Hrn.  

Pathway and network analysis  

  Network analysis of these differentially expressed genes was done with the trial 

version of Ingenuity pathway analysis (Ingenuity Systems Inc, Mountain View, CA). The 

list of differentially expressed genes as well as their expression changes was uploaded to 

the online database of Ingenuity. The program generates all the possible networks from 

the uploaded genes plus the annotated genes in the online database. Figure 5-2 just shows 

one gene network generated from the microarray analysis by Ingenuity. Genes with red 

color indicate those genes downregulated in microarray analysis and those with green 
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Table 5-5 Clusters of differentially expressed genes in cytobands of mouse chromosomes 

in 7-day Hrn/Hrn mice. Microarray analysis was done with ImaGene and GeneSight. The 

cytoband analysis was through DAVID 2.1 from NIH. 

Cytoband Gene ID Gene Name 
NM_007520 BTB and CNC homology 1 

U50960 RIKEN cDNA 1190017O12 gene 
AF345291 keratin associated protein 16-1 

NM_010676 keratin associated protein 8-2 
BC006914 leucine zipper domain protein 
AK007207 myosin, light polypeptide kinase 

NM_008762 olfactory receptor 15 

16 A1 
 
 
 
 
 AK003884 

protein phosphatase 1F (PP2C domain 
containing) 

NM_025562 tetratricopeptide repeat domain 11 
5 G1 AK019689 unc-84 homolog A (C. elegans) 

NM_008215 hyaluronan synthase1 
17 A3.1 NM_025681 limb expression 1 homolog (chicken) 

AK011461 BTB (POZ) domain containing 4 
AY044153 histamine receptor H 3 2 H4 

 AK005136 phosphatase and actin regulator 3 
D86424 keratin associated protein 3-1 

NM_015741 keratin associated protein 9-1 
NM_010659 keratin complex 1, acidic, gene 1 

V00830 keratin complex 1, acidic, gene 10 

11 D  
  
  
  X75650 keratin complex 1, acidic, gene 3 
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Table 5-6 Functional annotation of the microarray data from 7-day Hrn/Hrn mice through 

DAVID 2.1 from NIH. 

Enriched Categories Enriched Genes 
AK017747 SMC2 structural maintenance of chromosomes 2-like 1 

NM_028333 angiopoietin-like 1 
NM_016857 exocyst complex component 7 
BC011407 golgi autoantigen, golgin subfamily a, 2 
BC002226 hook homolog 2 (Drosophila) 

NM_010659 keratin complex 1, acidic, gene 1 
V00830 keratin complex 1, acidic, gene 10 
X75650 keratin complex 1, acidic, gene 3 
X99143 keratin complex 2, basic, gene 10 

NM_008445 kinesin family member 3C 
M15525 laminin B1 subunit 1 

AJ293592 laminin, alpha 3 
AK005136 phosphatase and actin regulator 3 

NM_019400 rabaptin, RAB GTPase binding effector protein 1 
NM_009294 syntaxin 4A (placental) 

COILED COIL 
 
 
 
 
 
 
 
 AK019689 unc-84 homolog A (C. elegans) 

AL021127 centrin 2 
BC002226 hook homolog 2 (Drosophila) 

NM_010670 keratin associated protein 12-1 
D89901 keratin associated protein 6-3 

NM_015741 keratin associated protein 9-1 
NM_010659 keratin complex 1, acidic, gene 1 
NM_008445 kinesin family member 3C 
AK007207 myosin, light polypeptide kinase 

NM_015756 Shroom 
NM_009229 syntrophin, basic 2 
AF357392 t-complex protein 1 

CYTOSKELETON 
 
 
 
 
 
 
 NM_009446 tubulin, alpha 7 

NM_010670 keratin associated protein 12-1 
D86424 keratin associated protein 3-1 
D89901 keratin associated protein 6-3 

NM_015741 keratin associated protein 9-1 
NM_010659 keratin complex 1, acidic, gene 1 

V00830 keratin complex 1, acidic, gene 10 
X75650 keratin complex 1, acidic, gene 3 

KERATIN 
 
 
 
 X99143 keratin complex 2, basic, gene 10 

M15525 laminin B1 subunit 1 
AJ293592 laminin, alpha 3 BASEMENT 

MEMBRANE AB041350 procollagen, type IV, alpha 5 
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Table 5-6 Continued 
 

Enriched Categories Enriched Genes 
M15525 laminin B1 subunit 1 

AJ293592 laminin, alpha 3 
AB041350 procollagen, type IV, alpha 5 

EXTRACELLULAR 
MATRIX 

STRUCTURAL 
CONSTITUENT AK012212 procollagen, type XVI, alpha 1 

S37491 angiotensin receptor 1b 
U46027 cAMP responsive element binding protein 1 

NM_008177 gastrin releasing peptide receptor 
AK007207 myosin, light polypeptide kinase 

CALCIUM 
SIGNALING 
PATHWAY 

 S43865 
protein phosphatase 3, regulatory subunit B, alpha 

isoform (calcineurin B, type II) 
AB011019 EGF-like-domain, multiple 9 
AL513354 RIKEN cDNA 4931407K02 gene 
AL021127 centrin 2 
M15525 laminin B1 subunit 1 

NM_013589 
latent transforming growth factor beta binding protein 

2 

S43865 
protein phosphatase 3, regulatory subunit B, alpha 

isoform (calcineurin B, type II) 
NM_009229 syntrophin, basic 2 CALCIUM ION 

BINDING AK017244 trichohyalin-like 1 
AK011461 BTB (POZ) domain containing 4 

NM_007520 BTB and CNC homology 1 
NM_007526 BarH-like homeobox 1 
AK019761 GLIS family zinc finger 1 
AK004406 MAF1 homolog 

NM_010919 NK2 transcription factor related, locus 2 (Drosophila) 

BC013550 
TAF5-like RNA polymerase II, p300/CBP-associated 

factor (PCAF)-associated factor 
U46027 cAMP responsive element binding protein 1 

AK020505 early B-cell factor 2 
NM_008237 hairy and enhancer of split 3 (Drosophila) 
NM_010561 interleukin enhancer binding factor 3 

L09600 nuclear factor, erythroid derived 2 

NM_008904 
peroxisome proliferative activated receptor, gamma, 

coactivator 1 alpha 

TRANSCRIPTION 
REGULATION 

 
 
 
 
 
 
 

 AK021201 protein kinase C binding protein 1 
NM_007520 BTB and CNC homology 1 

U46027 cAMP responsive element binding protein 1 
BASIC-LEUCINE 

ZIPPER (BZIP) 
TRANSCRIPTION 

FACTOR L09600 nuclear factor, erythroid derived 2 
M15525 laminin B1 subunit 1 PROTEIN 

PHOSPHATASE 
INHIBITOR AJ293592 laminin, alpha 3 
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Figure 5-2 One network generated from the differentially expressed genes in microarray 

analysis at 7 days of age with trial version of Ingenuity. Red: downregulated expression; 

Green: upregulated expression. 
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color are for the genes with upregulation. The program is able to identify the signaling 

pathways connected through the networks. For example, the network shown in figure 5-2 

indicated that three signaling pathways, ERK/MAPK signaling, G-protein-coupled 

receptor signaling, and Wnt/β-catenin signaling pathways are affected by Hrn mutation. 

Altogether, there are more than 10 different networks generated by network analysis 

using Ingenuity. Totally there are seven different signaling pathways affected in Hrn/Hrn 

mutant mice: Wnt/β-catenin signaling, ERK/MAPK signaling, apoptosis signaling, TGF-

β signaling, NF-κB signaling, P38 MAPK signaling, G protein coupled receptor signaling. 

All these pathways play important roles in cell cycle and growth. Wnt/β-catenin (Fuchs, 

1998; Jamora et al., 2003; Lowry et al., 2005) and TGF-β (Peters et al., 2005) signaling 

pathways are critically involved in hair follicle development and hair cycle. The analysis 

of signal pathways suggests the possible roles of Hrn mutation due to either the over-

expression of Hr gene or another unknown gene mutation. 

At the same time, PathwayAssist software from Stratagene was also used to 

analyze the differentially expressed genes at 7 days of age (figure 5-3). Instead of 

deriving many separate networks in Ingenuity, PathwayAssist generates a large network 

based on the gene lists by extracting biological interactions from the scientific literature. 

The uncharacterized genes within the uploaded gene list were listed as separate nodes 

outside of the network. The cellular processes affected in the networks include focal 

contact, motility, differentiation, proliferation, assembly, secretion, oxidative 

phosphorylation, and apoptosis. The functional classes affected include protein kinase C, 

SAP kinase, antisense RNA, porin, caspase, ubiquitin, hydrolase, and protein 

serine/threonine kinase. The cell objects affected in the network include plasma 

membrane, cytoskeleton, intermediate filament, adhesion junctions, and chromatin. The 

network also lists the small molecules working in the network, such as glucose and 

dexamethasome. Compared to the analysis with Ingenuity, the information generated 

from the network is less reliable since the interactions extracted from literature text 

mining while the interactions in Ingenuity is curated and updated very often in its online 

database. Altogether, the analyses with both softwares suggest the alteration of 

proliferation, differentiation, and apoptosis as well as the related signaling pathways. 
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Figure 5-3 Pathway analysis with the differentially expressed genes at 7 days of age 

through the trial version of PathwayAssist from Stratagene. 
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Discussion 

Histological analysis with mutant mice from 0 to 4 days after birth suggests that 

there is abnormal pre-mature keratinization occurring in the cortex region of hair follicles 

that begins right after or even before birth. It is not known what occurred during the 

embryogenesis stages since it is still very difficult to get a homozygous litter and we have 

not performed timed matings. Premature keratinization may be the initial event that leads 

to hair loss in Hrn mice. The premature keratinization in the hair follicle of 0 to 4 days 

old mutant mice validates the previous finding in older mice of abnormal hyperkeratosis 

in the hair follicles and the formation of mineralized dermal cysts. This histological 

change is due to either a regulatory mutation in Hrn in Hr or an unknown mutation in 

another gene. 

Microarray analysis with 0 day mutant mice provides more explanation about the 

phenotypes in Hrn mutants. Two thirds of the genes with altered expression are 

upregulated in the mutants and others are downregulated. Among the list, one interesting 

gene is keratin 2-6a with more than 2 fold increased expression. As reported in the 

previous chapter, numerous keratins and keratin-associated proteins are dysregulated in 

older Hrn mice. Krt2-6a is the first of this class of genes to show altered expression. Krt2-

6a usually forms a heterodimer with keratin 1-16 or keratin 1-17. Krt2-6a is 

constitutively expressed in the various stratified epithelia, including the companion cell 

layer of the hair follicle, tongue, footpad, nail bed, oral mucosa t (Mahony et al., 2000; 

Rothnagel et al., 1999). In addition, the expression of keratin 2-6a is inducible in 

response to different stimulus, for example, wounding, diseases states including skin 

tumors and psoriasis (Stoler et al., 1988), phorbol esters and all trans-retinoic acid 

(Rothnagel et al., 1999). The induction results in its expression in the outer root sheath of 

hair follicle and throughout the epidermis, including the basal layer. The increased 

expression of keratin 2-6a in Hrn/Hrn mice might be directly or indirectly due to the Hrn 

mutation. A mutation that caused loss of mouse keratin 2-6a results in the collapse of 

keratin filaments, the destruction of hair follicles and eventually alopecia, indicating that 

the innermost outer root sheath cells are uniquely sensitive to even slightly altered keratin 

2-6a proteins (Baker et al., 1997; Wojcik et al., 1999). Therefore, the increased 



www.manaraa.com

86 86

expression of mouse keratin 2-6a might cause abnormal keratinization in outer root 

sheath of hair follicle in Hrn/Hrn mice, which results into the destruction of hair follicle 

and eventual formation of alopecia.  

 Another gene called Sprr1b (small proline-rich protein 1B) was upregulated with 

more than 2 fold in Hrn/Hrn than +/+ mice. Sprr proteins are the primary constituents of 

the cornified envelope (Martin et al., 2004). Sprr1b locates in a region called epidermal 

differentiation complex in chromosome 1 consisting of S100A10, trichohyalin, 

profilaggrin, involucrin, SPRR3, SPRR1B, SPRR2A, loricrin, S100A9, S100A9, S100A8, 

S100A6, which are related with the terminal differentiation of epidermis (Mischke et al., 

1996). The increase expression of Sprr1b indicates the increased cornified materials, 

which suggests hyperkeratosis occurrence in Hrn/Hrn mice.  

 Another one interesting differentially expressed gene is called Smarca2, 

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, 

member 2. It was shown that Smarca2 homologs in human are transcriptional 

coactivators cooperating with the estrogen receptor, the retinoic acid receptor (Chiba et 

al., 1994), and the glucocorticoid receptor (Muchardt and Yaniv, 1993). Its expression 

was upregulated by 2-fold in Hrn/Hrn mice compared to +/+ mice. This gene has been 

identified as a gene correlated with an anti-hair growth pattern, with sharp expression 

rising at catagen (Lin et al., 2004). Increased expression of Smarca2 might underlie 

reduced hair growth in Hrn/Hrn mice.  

Major urinary proteins (MUPs) are members of lipocalin family proteins mainly 

produced by the liver. They are secreted into the urine and bind to small-molecular-

weight volatile pheromones. In rodents, they play important roles in individual 

recognition, territorial marking, social behavior, and transport of small molecules 

(Beynon and Hurst, 2003). Increased expression at 0-day Hrn/Hrn mice might be due to 

the unbalanced ratio of male and female mice between +/+ and Hrn/Hrn mice as we did 

not establish the gender of pups used at this age. Another possible explanation is that the 

increased expression of these major urinary proteins is due to Hrn mutation or part of the 

Hrn phenotype. Recently, an increased expression (5-fold) of major urinary protein 1 was 

reported in Hr-/- mice compared to wild type mice through the microarray analysis, which 
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was also verified by the northern blot (7-fold) (Zarach et al., 2004). In addition, it was 

also reported that this group of proteins was upregulated in our HrrhR/HrrhR mice through 

microarray analysis (mentioned in Chapter 6). MUPs have been shown to be expressed in 

skin, and their function there has been linked to transport of small molecules (Held et al., 

1989). The transgenic mice with a fusion of ~2.5 kb of 5’ flanking region from the MUP 

BL6-11 gene with SV40 T antigen coding sequence expressed the transgene in the skin 

sebaceous glands and the preputial gland, a modified sebaceous gland, which is 

consistent with the presence of MUP mRNA in the skin and a putative role for MUPs in 

the transport and excretion of small molecules (Held et al., 1989). This validates our 

microarray experiments in terms of the expression of MUP gene in the skin and suggests 

a possible function related with skin and hair growth. It was also found that the 

expression of major urinary protein 2 (MUP2) was suppressed by 3-methylcholanthrene 

(MC) through aryl hydrocarbon receptor (AhR)-mediated disruption of the growth 

hormone (GH) receptor signaling pathway (Nukaya et al., 2004). The function of AhR is 

known to interact with Hr. All of these suggest that the down-regulation of major urinary 

proteins in Hrn/Hrn mice might be related with the over-expression of Hr gene or another 

unknown gene mutation. 

Another gene, SH2-B PH domain containing signaling mediator 1 (Sh2bpsm1 or 

Sh2-B) was differentially expressed at 0-day mutant mice with increased expression. The 

isoforms of Sh2-B form a family of signaling proteins with other proteins including APS 

and LNK. The functions of Sh2-B have been described as activators, mediators, or 

inhibitors of cytokine and growth factor signaling. Sh2-B is an endogenous enhancer of 

leptin sensitivity and required for maintaining normal energy metabolism and body 

weight in mice (Ren et al., 2005). Sh2-B homozygous null mice were severely 

hyperphagic and obese while the overexpression of Sh2-B counteracted PTP1B-mediated 

inhibition of leptin signaling in cultured cells (Ren et al., 2005). The expression of Sh2-B 

was significantly increased by almost 3 fold in Hrn/Hrn mutant mice compared to +/+ 

mice, which might be related with the retarded body growth in Hrn mutant mice. Sh2-B 

also regulates the activity of a variety of transporters under normal and pathological 

conditions (Jiang et al., 2005), which might play important roles in skin or hair growth. 
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Sh2-B also specifically activates JAK2 and it may serve as adapter proteins for all three 

JAKs (JAK1-3) independent of any role they have in JAK activity (O'Brien et al., 2002). 

The adapter protein Sh2-B in human was found to interact with FGFR3 (fibroblast 

growth factor receptor 3) to mediate FGFR3-dependent signaling. The increased 

expression of human Sh2-B in 293T cells activates FGFR3, which causes the 

phosphorylation and nuclear translocation of STAT5 (Kong et al., 2002b).  Sh2-B was 

shown having roles in mast cell development (Kubo-Akashi et al., 2004). Here we 

observed two mast cell proteases with differential expression in Hrn mutants, which 

might suggest the possible involvement of Sh2-B in the mutants. 

One gene called tenascin C (Tnc) was upregulated in 0-day mutants. It is an 

extracellular matrix protein with a spatially and temporally restricted tissue distribution. 

In the embryo it is present in dense mesenchyme surrounding developing epithelia, in 

tendon anlagen, and in developing cartilage and bone. In the adult tenascin remains 

present in tendons and myotendinous junctions in the perichondrium and periosteum, as 

well as in smooth muscle. It was shown that this gene is enriched in the outer root sheath 

(ORS), as one of the molecular signatures of ORS (Rendl et al., 2005). Tnc induces the 

expression of Mmp-9 (matrix metalloproteinase 9) in the collaboration of TGFβ 1 in 

breast cancer cells (Ilunga et al., 2004; Kalembeyi et al., 2003), suggesting that the 

increased expression might directly involve into the phenotype development of the Hrn 

mutants. 

Claudin 5 (Cldn5), also called transmembrane protein deleted in velocardiofacial 

syndrome (TMVCF), was also upregulated in Hrn mutants at 0 day of age. Claudins are 

components of tight junction strands. Tight junctions constitute continuous seals around 

cells that serve as a physical barrier preventing solutes and water from passing freely 

through the paracellular space. Other members of claudin family, Cldn1 and Cldn3 

decreased solute permeability in overexpressing cells, while Cldn5 increased 

permeability (Coyne et al., 2003). Cldn5 exists predominantly in pentameric and 

hexameric configurations and forms specific heterophilic interactions with Cldn1 and 

Cldn3 (Coyne et al., 2003). Cldn1, Cldn4, and Cldn10 are found to be the signature genes 

of the matrix in hair follicles (Rendl et al., 2005) and skin lacking Cldn1 displays 



www.manaraa.com

89 89

abnormally short hairs and wrinkled skin (Furuse et al., 2002). The increased expression 

of Cldn5 might abolish the heterophilic protein complex with Cldn1 and Cldn3 and 

contribute to the phenotype development of Hrn mutants.  

It was very interesting to notice that several genes in the 0-day list, including 

hemopoietic cell phosphatase (Hcph), mast cell proteases (Mcpt6 and Mcpt7), and 

cysteine-rich protein 3 (Csrp3), are upregulated. These genes were recently found to have 

an expression pattern inversely correlated with hair growth, with decreased expression in 

anagen and increased expression in catagen phase of normal hair cycles (Lin et al., 2004). 

Increased expression of these genes might be related to the reduced hair growth. Another 

gene called carbonic anhydrase 3 (Car3) was downregulated in 0-day mutants. The 

expression of Car3 drops at catagen in normal hair follicle cycles (Lin et al., 2004). The 

decreased expression of Car3 suggests abnormal hair growth in the mutants.  

Microarray analysis with mice at 7 days of age identified a larger set of 

differentially expressed genes, including many keratins and keratin-associated proteins 

that are directly related to hair growth. The down-regulation of hair keratins and keratin-

associated proteins is consistent with the loss of hair in mutant animals. Most of these 

genes are significantly downregulated in Hrn mutants, suggesting that the overexpression 

of Hr as a transcriptional co-repressor might be a cause of the Hrn phenotype. Several 

cytobands on different mouse chromosomes, including 2H4, 5G1, 11D, 16A1, and 

17A3.1, were enriched with many differentially expressed genes, suggesting the genes in 

each cytoband might be regulated by a common promoter or a similar mechanism. 

Cytobands 16A1 and 11D contain many structural proteins including many keratins and 

keratin-associated proteins. It is possible that the expression of these genes might be the 

immediate downstream events of Hrn mutation.  

Functional annotation of the microarray results suggests that many categories 

were significantly enriched, indicating the importance of these categories in hair growth, 

including keratins, extracellular matrix structural constituent, calcium signaling pathway, 

and transcription regulation. Several of the genes with differential expression were 

suggested previously as molecular signatures of hair matrix (Krt1-1 and krt2-10), outer 

root sheath (Col4a5), and dermal papilla (Lama3, Pdgfra) (Rendl et al., 2005). The 
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expression of all these signature genes was downregulated in Hrn mutants, possibly 

suggesting reduced proliferation in hair matrix, outer root sheath, and dermal papilla, 

consistent with our histological findings.  

Network analysis of the microarray data suggests that the Hrn mutation affects 

Wnt/β-catenin, apoptosis, and TGF-β signaling pathways in skin of Hrn/Hrn mutants. It 

has been shown that these signaling pathways plays very important roles in hair follicle 

morphogenesis, hair growth and hair follicle cycles (Fuchs, 1998; Paus and Foitzik, 2004; 

Rogers, 2004; Shimizu and Morgan, 2004; Stenn and Paus, 2001). Genes related with 

Wnt/β-catenin signaling pathways are downregulated, suggesting repressed Wnt 

signaling. Recently it was found that Hr triggers reactivation of hair growth by repressing 

Wise, a modulator of Wnt signaling, and promoting Wnt signaling (Beaudoin et al., 

2005). Hr overexpression in 7-day Hrn/Hrn mice should promote Wnt/β-catenin signaling 

pathway. However, we were unable to detect the expression changes of Wise in 7-day 

Hrn/Hrn mice. One reason for this is that the location of Hr expression is different 

between the transgenic Hr mice generated for reactivating hair growth (Beaudoin et al., 

2005) and our Hrn/Hrn mutants. Hr expression in the transgenic mice is in the outer root 

sheath and hair bulb as the follicles enter catagen and is under the control of keratin 14 

promoter (Beaudoin et al., 2005). However, in Hrn/Hrn mutant mice, Hr is expressed in 

the outer root sheath, inner root sheath, matrix cells, and fibroblasts in the sinus. Thus, it 

is very difficult to compare these two mouse models.  

Pathway and network analysis from the microarray data also suggests that many 

cellular processes including focal adhesion, differentiation, proliferation, assembly, and 

apoptosis are altered in skin of Hrn/Hrn mutants. Focal adhesion is critical for outer root 

sheath to adhere to, synthesize, and remodel its adjacent basement membranes. The 

alteration of focal adhesion in skin suggests the change in outer root sheath. Dsg4 null 

mice are an example of how loss of an adhesion molecule in hair follicles lead to hair loss, 

and in fact these mice display a phenotype very similar to that of Hrn. Changes of 

proliferation and differentiation in skin are consistent with the histological analysis, 

which indicates reduced proliferation and abnormal switch from proliferation to 

differentiation in hair follicle precortical region. The alteration of assembly might suggest 
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the abnormal assembly of hair keratins and keratin-associated proteins, leading to the 

premature keratinization in the precortex region and aberrant hair shaft formation. 

Changes of apoptosis in skin might reflect the change of cell proliferation and the failure 

of hair shaft formation. The affected cellular objects from pathway analysis including 

cytoskeleton, intermediate filament, adhesion junctions, and chromatin, are consistent 

with the functional annotation of the microarray data, which suggests the similar 

categories are enriched and altered due to the Hrn mutation. 

It is very surprising to notice that so many genes responsible for immune function 

are differentially expressed at both 0 and 7 day-old mice. Hair follicle has a very complex 

immunologic profile with matrix cells in its base and perifollicular macrophages, mast 

cells, Langerhan’s cells, and other immunocytes. It is possible that the alteration of 

immune profiling might be secondary to the hair follicle phenotype. However, it is also 

possible that the immune changes observed with microarray analysis are due to the Hrn 

mutation. It has been shown recently that hairless could trigger reactivation of hair 

growth in hair follicle by promoting Wnt signaling (Beaudoin et al., 2005) and it was 

found that Wnt/β-catenin signaling pathway was altered in the mutants. If the Hrn 

phenotype is related with the overexpression of Hr gene, then Wnt signaling pathway 

should be affected. Tcf1 (T-cell factor 1) and Lef1 (lymphoid enhancing factor-1) are 

critical for the development of T cells (Verbeek et al., 1995). Homologs of Tcf1/Lef1 has 

been shown to interact with Wnt effector β-catenin to mediate axis formation in Xenopus 

(Molenaar et al., 1996). It was shown that interaction of Tcf1 with β-catenin was required 

for thymocyte differentiation, and that this interaction was shown to be mediated by Wnt1 

and Wnt4 (Staal et al., 2001). Based on this, many genes related with T-cell 

differentiation and development could be differentially expressed due to Hrn mutation 

and not secondary to the phenotype.  

In summary, the Hrn mutation was characterized with the histological analysis of 

young animals and microarray analysis of mice at different ages. Although the genetic 

mutation has not been identified, we have studied the signaling pathways affected by this 

mutation. The microarray analysis might provide useful clues to explore the molecular 

targets of HR and help to finally identify the underlying genetic mutation.  
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Chapter 6 Molecular and physiological basis for hair loss  

in mice carrying a novel nonsense mutation in Hr 

The results presented in this chapter are being prepared as a manuscript that will 

be submitted to Journal of Investigative Dermatology. 

Introduction  

 The first description of rhino mice was reported by Gaskoin in 1856 (Gaskoin, 

1856) as “rhinoceros” with hair loss and wrinkled skin. Later, the mouse called hairless 

arose spontaneously in 1939 at McGill University in Montreal, Canada (Sundberg, 1994). 

Shortly thereafter it was shown that rhino and hairless were allelic (Howard, 1940). The 

phenotype in rhino mice (Hrrh) is more severe than that of hairless mice (Hrhr), and this is 

thought to be due to more severe effects of the mutation on Hr protein levels. The 

classical mutation Hrhr is caused by the insertion of a provirus into intron 6 of Hr, 

resulting in aberrant splicing and significantly reduced expression (Jones et al., 1993). All 

cloned Hrrh mutations are nonsense mutations that cause nonsense-mediated decay of Hr 

mRNA (Panteleyev et al., 1998b) and virtually complete loss of mRNA.  

Rhino alleles of Hr are so named because of the excessive skin wrinkling of Hrrh 

mutants. The wrinkling is due to large utricles and dermal cysts filled with keratins that  

form in the dermis from the remnants of hair follicle (Mann, 1971; Panteleyev et al., 

1998b; Sundberg, 1994; Sundberg and Boggess, 1998). Dermal cysts originate from 

undifferentiated epithelial cells of the deepest part of the hair follicle with the peripheral 

cells developing into sebocyte-like cells and outer root sheath cells (Bernerd et al., 1996). 

The cysts are filled with keratins 5, 14, 6, and 17, and lipids including cholesterol esters, 

wax esters, and very small amounts of triglycerides, cholesterol and ceramides (Bernerd 

et al., 1996). As for Hrhr, hair loss coincides with onset of the first postnatal anagen. 

Nonsense mutations in Hr have also been described in human patients with APL, but the 

excessive skin wrinkling is not present in affected human patients.  

HrrhR arose spontaneously downstream of a translocation experiment, but was not 

due to a translocation. The male parent was a treated JH male and the female parent was 

an SB female. SB refers to the F1 hybrid made from SEC/E x C57BL/E. The mutant was 

outcrossed to BLH F1's for stock maintenance. BLH refers to C3Hf x C57BL10a. 
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Homozygous mutant mice are normal at birth and display a typical coat until 2-3 weeks 

after birth, the time at which the first hair cycle initiates. At this point they fail to initiate 

the first hair cycle and begin to lose their hair. By 5-weeks of age the mice are hairless 

and have wrinkled skin. Because the phenotype of this mutant is so similar to the known 

rhino (Hrrh) mice (Howard, 1940; Panteleyev et al., 1998b), we sequenced the Hr 

genomic DNA and found a novel nonsense mutation in exon 12, leading to a premature 

stop codon. Here we report the cloning of this rhino allele of Hr, detailed histological and 

molecular characterization of the phenotype. 

Results 

Phenotype 

The HrrhR mutant mice arose spontaneously in Oak Ridge National Lab. It was 

maintained in the ORNL mouse facility by mating HrrhR/HrrhR male with HrrhR/+ female 

with an inbred mixed strain background. Both genders of mutant mice appear to be fertile 

and viable, but the females have difficulty in nursing pups, likely due to skin lesions that 

develop due to thin skin. HrrhR/HrrhR mice were distinguishable from HrrhR/+ or +/+ as 

early as 2 weeks of age due to hair loss. HrrhR/+ mice are phenotypically normal. As the 

HrrhR/HrrhR mice age, they become almost completely nude and their skin becomes 

excessively wrinkled in a fashion similar to other Hrrh alleles (Ahmad et al., 1998c; 

Ahmad et al., 1998d; Brancaz et al., 2004; Garcia-Atares et al., 1998; Panteleyev et al., 

1998a; San Jose et al., 2001; Sundberg and Boggess, 1998) (Figure 6-1 A). One 

difference is that hair loss in HrrhR/HrrhR mice begins in a random manner across the body, 

while other Hr mutants lose hair in a head-to-tail manner (Panteleyev et al., 1998b). The 

hair on the snout, head, and both ears is the last to be lost (Figure 6-1 B), likely due to the 

slower cycling of follicles in these areas. The HrrhR/HrrhR mutant mice still have the 

vibrissae even after they are hairless. The homozygotes have longer nails compared to the 

heterozygotes by 4 weeks of age and become more significant with age (data not shown). 

Thymuses in the homozygotes are much smaller compared to those in the heterozygotes, 

suggesting thymic abnormalities related to the mutation.  
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Figure 6-1 Photos of HrrhR/HrrhR mice. (A) 6-month old HrrhR/HrrhR; (B) 5-week old 

HrrhR/HrrhR. 
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Novel nonsense mutation 

 The phenotype of HrrhR/HrrhR mutant mice is extremely similar to other rhino 

mice (Hrrh/Hrrh). Therefore, we began by sequencing the genomic region of Hr using  

direct sequencing of PCR products amplified using primer pairs that spanned the genomic 

DNA (Table 3-1). Genomic DNA was extracted from tail snips. Primers were designed to 

amplify overlapping fragments of about 700-900 bp in length. PCR products were 

separated through 1% agarose gel electrophoresis and purified with GFX columns. 

Sequences were extracted from raw chromatograms using Chromas software and 

compared to the published Hr sequence using BLAST (NCBI). Using this strategy, we 

found a base pair change from C to T in position 3134 of Hr mRNA (NM_021877) in the 

homozygous mutant mice (Figure 6-2). This change occurred in exon 12 of Hr gene 

leading to the formation of a premature stop codon from arginine 814 (R814X). As 

expected, heterozygotes showed a mixture of C and T at position 3134. Samples from a 

total of 100 animals were sequenced to confirm the mutations. Due to its distance from 

the terminal exon, this mutation is predicted to be degraded through nonsense-mediated 

decay. The mutation also abolishes a digestion site of restriction enzyme Cac8I, which 

can be used to genotype mice prior to the development of hair loss. A new pair of primers 

was specially designed to amplify the segment containing the mutation as well as the 

restriction digestion site of Cac8I.  The amplified PCR product from wild type mouse 

was fully digested by Cac8I (figure 6-3). It showed two bands with smaller size around 

200 bp in the gel electrophoresis. The PCR product from the DNA of the heterozygous 

mice was partially digested by Cac8I and three bands were seen in the gel electrophoresis. 

Among the three bands, the very top one is the DNA without restriction digestion by 

Cac8I. The two bands in the bottom are digested DNA fragments. The PCR product from 

the DNA of HrrhR/HrrhR mice was not digested by Cac8I due to the mutation and only one 

band was seen at the top of the agarose gel. The results of Cac8I restriction digestion 

were confirmed with DNA sequencing.  

Significant reduction of Hr expression 

 Northern blotting was used to determine if the mutant HrrhR mRNA was degraded 

due to nonsense-mediated decay. Two different probes were designed, one covering the  
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Figure 6-2 Genotyping of wild type (+/+), heterozygous (HrrhR/+), homozygous 

(HrrhR/HrrhR) mice in exon 12 of Hr. Arrows indicate the position of mutation (3134C to 

T of NM_021877). Wild type mice have a C at position 3134. Heterozygous mice have 

T/C at this position. Homozygous mice have a T at this position. 

C C A G G C C T G C/T G A G G A
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C C A G G C C T G T G A G G A
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Figure 6-3 The digestion pattern of PCR products from the genomic DNA of HrrhR/HrrhR, 

HrrhR/+, and +/+ mice. The PCR products were amplified with primers called gRHF and 

gRHR.  
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exon 12 and containing the mutation site, and the other covering exons 5 to 11. Both 

probes were amplified through PCR, separated on gel, and purified through GFX 

columns. Total RNA from dorsal skin of 1, 7, 14, and 35-day old mice was extracted,  

separated on gels using electrophoresis, transferred overnight to the membranes using 

capillary effect, and crosslinked to the membranes using UV-light. Probes were randomly 

labeled with α-32P-CTP and hybridized to membranes at 42°C overnight. Results are 

shown in figures 6-4 and 6-5. Results with each probe suggest that there is significant 

loss of Hr mRNA in HrrhR/HrrhR mutant mice compared to either wild type or HrrhR/+ 

mice. This significant loss of Hr expression was found in homozygous mice at all ages 

including 1-, 7-, 14-, and 35-day after birth. There is only one major band in each 

Northern blot, matching to the size of full-length Hr mRNA transcript. No other 

transcripts were found, indicating that no alternatively spliced transcripts correspond to 

these two probes. Splicing might occur in other regions of Hr gene not represented by 

these probes, such as 3’ end. There is a very strong signal of Hr expression in 14 days 

after birth, consistent with its known expression pattern. HrrhR/HrrhR mutant mice exhibit 

much more prominent wrinkling phenotype than hairless mice (Hrhr/Hrhr) or rhino mice 

(Hrrh/Hrrh). The phenotype is very similar to the one in rhino-Yurlovo (HrrhY/HrrhY) 

(Panteleyev et al., 1998a) and the null mutant (Hrtm1Cct/Hrtm1Cct) (Zarach et al., 2004). 

This might suggest that the severe skin-wrinkling phenotype in HrrhR/HrrhR mutant mice 

is due to significant or complete loss of Hr expression.  

Utricle and dermal cysts formation 

 It was reported previously that formation of utricles at postnatal day 12 was the 

first morphological change in Hr-/- mice (Zarach et al., 2004). A detailed histological 

analysis with a series of different ages of mice from postnatal day 1 to 35 was performed 

to identify the first recognizable change in HrrhR/HrrhR mutants. The development of hair 

follicles in HrrhR/HrrhR mice is normal compared to wild type at postnatal days 1 and day 

7 (Figure 6-6) and overall follicle structure is normal. There is no difference in the 

thickness of epidermis or the number of hair follicles in the skin between HrrhR/HrrhR and 

HrrhR/+ mice. By postnatal day 10, however, the infundibulum near the top of the piliary 

canal become wider and contains increased keratinized material (Figure 6-7), ultimately  
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Figure 6-4 Significant reduction of Hr expression in the dorsal skin of HrrhR/HrrhR mice 

(1). The total RNA was extracted from the dorsal skin of each genotype at different ages 

(1, 7, 14, 35 days after birth). 20 μg of the total RNA was loaded on each lane. The probe 

was amplified with PCR covering exon 12 containing the mutation.  The probe was 

randomly labeled with α-32P-CTP and blot to the membrane overnight at 42°C. The red 

block arrow indicates the position for full-length hairless mRNA. The bottom panel 

shows the intensity of 28S band from the gel.  
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Figure 6-5 Significant reduction of Hr expression in the dorsal skin of HrrhR/HrrhR mice 

(2). The total RNA was extracted from the dorsal skin of each genotype at different ages 

(1, 7, 14, and 35 days after birth). Twenty μg of the total RNA was loaded on each lane. 

The probe was amplified with PCR covering exon 5 to exon 11.  The probe was 

randomly labeled with α-32P-CTP and blot to the membrane overnight at 42°C. The red 

block arrow indicates the position for full-length hairless mRNA. The bottom panel 

shows the intensity of 28S band from the gel.  
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Figure 6-6 Histology of the dorsal skin from HrrhR/+ and HrrhR/HrrhR mice at 1 and 7 days 

of age. (A) Histology of the dorsal skin of 1-day old HrrhR/+ mouse; (B) Histology of the 

dorsal skin of 1-day old HrrhR/HrrhR mouse; (C) Histology of the dorsal skin of 7-day old 

HrrhR/+ mouse; (D) Histology of the dorsal skin of 7-day old HrrhR/HrrhR mouse.  
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Figure 6-7 Utricle formation in the dorsal skin of 10-day old HrrhR/+ and HrrhR/HrrhR 

mice. (A) Histology of the dorsal skin of 10-day old HrrhR/+ mice; (B) Histology of the 

dorsal skin of 10-day old HrrhR/HrrhR mice; (C) Higher magnification of a local area from 

panel B. 

 

(A) (B) 

(C) 
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leading to utricle formation in the HrrhR/HrrhR mutants. Other parts of the hair follicles in 

mutant mice are relatively normal compared to the heterozygous mice. These changes 

become more prominent by postnatal day 14 (figure 6-8) with the increase widening of 

the infundibulum in HrrhR/HrrhR mice. Cross sections also showed the formation of 

utricles. At postnatal day 18 (figure 6-9), the utricle formation is present in all the hair 

follicles in HrrhR/HrrhR mice, but none in HrrhR/+ mice. The amount of keratinized 

materials filling in the utricles increases progressively. The utricle formation 

encompasses the entire area distal to the sebaceous glands. By 3 weeks of age, the entire 

hair follicle becomes keratinized (figure 6-10 B). Hair follicles in HrrhR/HrrhR mice lose 

their connections with the dermal papilla, but no such change is seen in HrrhR/+ mice. 

Dermal cysts begin to form at this stage. By the age of 5-weeks, several layers of huge 

dermal cysts are formed and all hair follicles are disintegrated (figure 6-10 D). The 

dermal cysts are filled with a large amount of cornified materials. During the preparation 

of histological slides, a lot of white materials, which are cornified materials, fell out from 

the tissue. The size of the dermal cysts increases as the mice age, which causes 

progressive wrinkling of the skin. 

Microarray analysis  

 Little is known about the molecular basis of the morphological changes in 

HrrhR/HrrhR mutant mice. To identify the genes with altered expression in skin of 

HrrhR/HrrhR mutant mice, we used microarray experiments to profile expression in the 

skin of 7-day, 10-day, and 5-week old mice. We used these early ages to precede (7-day) 

and coincide with (10-day) the appearance of the phenotype. Gene expression changes in 

7-day old mice might suggest the earliest initial molecular events due to the HrrhR 

mutation. Differential expression at 10 days might provide the molecular basis related to 

formation of utricles, while the analysis with 5-week old mice might provide the 

molecular basis related with hair loss and the formation of dermal cysts. 

 Totally 10 mice (5 HrrhR/+ and 5 HrrhR/HrrhR) from one litter and 3 mice (1 

HrrhR/+ and 2 HrrhR/HrrhR) from another litter were used for the microarray analyses at 7 

days of age. Microarray analysis was done with ImaGene and GeneSight from 

Biodiscovery. No genes showed statistically significant alterations in gene expression. 
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Figure 6-8 Utricle formations in the dorsal skin of 14-day old mice. (A) Histology of the 

dorsal skin of 14-day old HrrhR/+ mice; (B) Histology of the dorsal skin of 14-day old 

HrrhR/HrrhR mice; (C) Higher magnification of formed utricle in the skin of HrrhR/HrrhR 

mice; (D) the cross sections of the dorsal skin of 14-day old HrrhR/HrrhR mice.

(A)
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(C) 
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Figure 6-9. Utricle formation in the dorsal skin from 18-day old HrrhR/+ and HrrhR/HrrhR 

mice. (A) and (B) Histology of the dorsal skin from 18-day old HrrhR/+ mice; (C) 

Histology of the dorsal skin from 18-day old HrrhR/HrrhR mice; (D) Histology of the cross 

sections of the dorsal skin from 18-day old HrrhR/HrrhR mice. 
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Figure 6-10 Dermal cyst formation in 21- and 35-day old HrrhR/HrrhR mice. (A) Histology 

of the dorsal skin from 21-day old HrrhR/+ mice; (B) Histology of the dorsal skin from 

21-day old HrrhR/HrrhR mice; (C) Histology of the dorsal skin from 35-day old HrrhR/+ 

mice; (D) Histology of the dorsal skin from 35-day old HrrhR/HrrhR mice.  

(A) 

(B) 

(D) 

(C) 
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by using 95% confidence interval and a minimum fold change of 2. This might be due to 

the limit of the oligolibrary spotted on the array because this oligolibrary does not cover 

the whole mouse genome. Since there are no significant morphological changes in the 

skin of 7-day HrrhR/HrrhR animals, this reinstates that the phenotype develops between 7 

and 10 days of age.  

 Unlike 7 days, significant changes in gene expression were found at 10 days, the 

earliest point at which the phenotypic changes were found histologically. These 

hybridizations used an oligo array format representing ~ 15,000 mouse genes. Six mice 

containing three HrrhR/+ and three HrrhR/HrrhR mice from one litter were used, and 

hybridizations with each pair of samples were done with dye swaps. All 6 slides 

generated high quality images. Data were analyzed with ImaGene and GeneSight from 

BioDiscovery to derive the list of genes with differential expression, using 99% 

confidence interval and a minimum fold change of 2. Differentially expressed genes were 

defined as those that were significant in analysis of all 6 hybridizations together and that 

showed a response in two of three biological replicates. Results are listed in table 6-1.  

 It is very intriguing to notice that most of the differentially expressed genes in 

table 6-1 are upregulated at 10-day after birth, which is consistent with the loss of Hr 

function as a transcriptional co-repressor (Zarach et al., 2004). This list of genes was 

uploaded to DAVID (Dennis et al., 2003) for functional annotation.  Several categories 

were enriched based on the functional annotation as shown in table 6-2. These categories 

include cell organization and biogenesis, intermediate filament, non-membrane-bound 

organelle, and coiled coil. The genes in each enriched category were listed in table 6-2. 

Among the differentially expressed genes, two of them are keratins, Krt2-1 and Krt1-10, 

both of which show increased expression in HrrhR/HrrhR mutants. Krt 1-10 and Krt 2-1 are 

coexpressed in terminally differentiated epidermis and heterodimerize to form 

intermediate filaments. Their co-upregulation indicates a disturbance of normal 

keratinocyte differentiation in HrrhR/HrrhR mice. 

 It was also found that a large number of genes related with either immunoglobulin 

or T cell receptor β chain are upregulated in the skin of 10-day old HrrhR/HrrhR mutants 

comparing to HrrhR/+ mice. These genes are listed in table 6-3. The increased expression 
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Table 6-1 List of differentially expressed genes from 10-day old HrrhR/HrrhR mice. Data 

was analyzed with ImaGene and GeneSight from BioDiscovery based on the 99% 

confidence interval and the fold change of 1.5 (20.6).  

Gene ID Gene name Symbol 
fold 

change
L04961 Xist (X inactive specific transcript) Xist -2.9 

AK013594 RIKEN cDNA 2900024O10 gene  -2.6 
NM_010702 Leukocyte cell-derived chemotaxin 2 Lect2 -2.4 
NM_007740 Procollagen, type IX, alpha 1 Col9a1 -2.1 
NM_016875 Y box protein 2 (Ybx2) Ybx2 1.9 
NM_011043 protocadherin 10 Pcdh10 1.9 
NM_019402 Poly(A) binding protein, nuclear 1 Pabpn1 1.9 
NM_013510 Erythrocyte protein band 4.1-like 1 Epb4.1l1 1.9 
AK011423 Glucosamine (N-acetyl)-6-sulfatase Gns 1.9 

AK011425 
Solute carrier family 25 (mitochondrial carrier, 

phosphate carrier), member 24 Slc25a24 1.9 
L38249 LIM homeobox protein 3 Lhx3 1.9 

NM_011957 cAMP responsive element binding protein 3-like 1 Creb3l1 2.1 
V00830 Keratin complex 1, acidic, gene 10 Krt1-10 2.1 

AK005108 RIKEN cDNA 1500002C15 gene  2.1 
AK020189 Zinc finger protein 59 (Zfp59) Zfp59 2.2 
AK003656 lipocalin-interacting membrane receptor Limr 2.3 

U94828 Regulator of G-protein signaling 16 Rgs16 2.3 
NM_008473 Keratin complex 2, basic, gene 1 Krt2-1 2.3 

L04678 Integrin beta 4 Itgb4 2.4 
AY036887 myeloid/lymphoid or mixed-lineage leukemia 3 Mll3 2.4 

NM_008952 Pipecolic acid oxidase, mRNA Pipox 2.4 

NM_008564
Minichromosome maintenance deficient 2 mitotin 

(S. cerevisiae) Mcm2 2.6 
L76157 proline rich protein with ubiquitin-like domain Bat-3 2.7 

NM_021883 Tropomodulin 1 (Tmod1) Tmod1 2.8 
NM_018874 Pancreatic lipase related protein 1 Pnliprp1 2.9 
NM_010552 Interleukin 17 Il-17 3.0 
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Table 6-2 Functional annotations of the differentially expressed genes in 10-day old 

HrrhR/HrrhR mice compared with HrrhR/+ mice. Enriched categories including the genes in 

each category was shown below.  The analysis was done with DAVID from NIH.  

 
Enriched Category Name Enriched Genes 

Cell organization and 

biogenesis 

 

Krt1-10, Krt2-1, Mcm2, 

Tmod1, Mll3, Pipox, Epb4.1l1 

Structural molecular 

activity 

Krt1-10, Krt2-1, Epb4.1l1, 

Col9a1 

Non-membrane-bound 

organelle 

Krt1-10, Krt2-1, Mcm2, 

Tmod1, Xist, Epb4.1l1 

Coiled-coil Krt1-10, Krt2-1, Mll3, Pabpn1 

mRNA binding Pabpn1, Ybx2 
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Table 6-3 List of differentially expressed genes related with immune functions in 10-day 

HrrhR/HrrhR mice compared with HrrhR/+ mice. Microarray analysis was done with 

ImaGene and GeneSight softwares from BioDiscovery based on the 99% confidence 

interval and the fold change of 1.5 (20.6). 

Gene ID Gene name 
fold 

change 
Z12394 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 2.5 
Z12416 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 2.2 
Z12426 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 1.9 
Z12446 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 2.5 
Z12457 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 2.1 
Z12461 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 2.4 
Z12497 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 2.4 
Z12498 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 2.7 
Z12499 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 1.9 
Z12545 rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ) 2.1 
Z12571 rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ) 1.9 
Z12184 T-cell receptor beta, variable 13 2.1 
Z12273 T-cell receptor beta, variable 13 2.5 
Z12280 T-cell receptor beta, variable 13 2.7 
U55582 IgG light chain gene, V region 3.8 

U21569 
Immunoglobulin A heavy chain variable region (IGHV gene), 

clone WJ17 2.2 
U55699 Immunoglobulin kappa light variable region (IgKV gene) 2.1 
Y11589 Immunoglobulin lambda chain, mAb 667 3.5 

AF041957 infected mouse A seq 9, day 14, T cell receptor beta chain 1.9 
AF041896 infected mouse B seq 5, day 7, T cell receptor beta chain 2.2 
AF041910 infected mouse C seq 13, day 7, T cell receptor beta chain 2.1 
AF041882 Uninfected mouse B seq 9, T cell receptor beta chain 1.9 
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of these genes is directly or indirectly due to the loss of Hr function. It suggests that there 

might be some significant immunological reactions occurring in the mutant mice. These 

immune responses might be related with the phenotypes in HrrhR/HrrhR mice although the 

exact functions of these genes in immune system of the skin are still not very clear.  

 Microarray experiments and data analysis were also applied to the 5-week old 

HrrhR/HrrhR and HrrhR/+ mice. Data were analyzed with ImaGene and GeneSight from 

BioDiscovery and shown in table 6-4. Most genes were upregulated due to the loss of Hr 

function since Hr is suggested to be a transcription co-repressor (Potter et al., 2001). 

There are four different keratins with differential expressions, including keratin 2-1, 

keratin 1-15, keratin 2-6a, and type I epidermal keratin. The expression of keratin 1-15 

was downregulated while the expression of the other three was upregulated due to the 

loss of Hr function. It was also found that many genes related to immunoglobin and T-

cell receptor were differentially expressed in 5-week HrrhR/HrrhR mice, which is listed in 

table 6-5.  

 The GenBank accession numbers of the differentially expressed genes were 

uploaded to DAVID 2.1 (http://apps1.niaid.nih.gov/david/) for functional annotation. 

Among the 138 differentially expressed genes, 119 genes were annotated in DAVID and 

used for further analysis.  About ten different categories were found to be enriched based 

on the level 5 of gene ontology, including molecular function, biological process, and 

cellular component (table 6-6). These enriched categories are cytoskeleton, myofibril, 

intermediate filament cytoskeleton, actin cytoskeleton, cytoskeleton organization and 

biogenesis, anion transport, angiogenesis, cellular macromolecule catabolism, cysteine-

type endopeptidase activity, and striated muscle thin filament. Most of these categories 

are related with cytoskeleton, which suggests that the loss of Hr function directly or 

indirectly affects the cytoskeleton. 

 The differentially expressed genes in 5-week old HrrhR/HrrhR mice as well as 

their expression alterations were uploaded to Ingenuity for pathway and network analysis. 

Figure 6-11 shows one network created from this analysis. Most of the genes in figure 6-

11 from our microarray analysis were upregulated. This analysis revealed signaling 

pathways that are affected in HrrhR, based on differential expression. Altogether, it was 
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Table 6-4 List of the differentially expressed genes in 5-week old HrrhR/HrrhR mice 

compared with HrrhR/+ mice. Microarray analysis was done with ImaGene and 

GeneSight from BioDiscovery based on 99% confidence interval and fold change of 1.6 

(20.7). 

Gene ID Gene Name 
Fold 

change 

AK002589 0610012D17Rik, RIKEN cDNA 0610012D17 gene 2.5 

BC004797 0610040J01Rik, RIKEN cDNA 0610040J01 gene -2.8 

AK005108 1500002C15Rik, RIKEN cDNA 1500002C15 gene 2.5 

AK005145 1500004F05Rik, RIKEN cDNA 1500004F05 gene -2.5 

AK006506 1700029K24Rik, RIKEN cDNA 1700029K24 gene 2.5 

AK006707 1700047G03Rik, RIKEN cDNA 1700047G03 gene 2.6 

AK006816 1700056N10Rik, RIKEN cDNA 1700056N10 gene 2.4 

AK018881 1700066C05Rik, RIKEN cDNA 1700066C05 gene 2.4 

AK007829 1810048J11Rik, RIKEN cDNA 1810048J11 gene 2.5 

AK007938 1810062O18Rik, RIKEN cDNA 1810062O18 gene -2.3 

AK009423 2310020J12Rik, RIKEN cDNA 2310020J12 gene -2.7 

U01139 2610020N02Rik, RIKEN cDNA 2610020N02 gene 2.4 

AK019584 4930425K24Rik, RIKEN cDNA 4930425K24 gene 3.2 

AK015453 4930453J04Rik, RIKEN cDNA 4930453J04 gene -2.6 

AK016542 4932432N11Rik, RIKEN cDNA 4932432N11 gene 2.7 

AK017060 4933434M16Rik, RIKEN cDNA 4933434M16 gene 2.4 

AK017381 5430432M24Rik, RIKEN cDNA 5430432M24 gene 2.3 

AK020414 9430013L17Rik, RIKEN cDNA 9430013L17 gene 2.6 

AK020947 A930040O22Rik, RIKEN cDNA A930040O22 gene 4.0 

NM_011062 3-phosphoinositide dependent protein kinase-1 (Pdpk1) -2.3 

NM_020561 acid sphingomyelinase-like phosphodiesterase 3a (ASML3) 2.7 

NM_009672 acidic nuclear phosphoprotein 32 (Anp32) -2.8 

AK014322 AF4/FMR2 family, member 3 (Aff3) 2.7 

NM_007504 
ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 

(Atp2a1) -2.2 

Z83816 axonemal dynein heavy chain (partial, ID mdhc8). 3.3 

NM_026602 Breast carcinoma amplified sequence 2 (Bcas2) 3.8 

U80888 CAG trinucleotide repeat mRNA -2.4 

NM_020036 calmodulin 4 (Calm4) 3.4 
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Table 6-4 Continued 
 

Gene ID Gene Name 
Fold 

change 

AK014694 camello-like 3 (Cml3) -3.2 

AB070894 clipin E/coronin 6 type A -2.6 

NM_007779 colony stimulating factor 1 receptor (Csf1r) -2.2 

NM_007710 creatine kinase, muscle (Ckmm) -2.2 

NM_007793 cystatin B (Cstb) 2.9 

AK003744 Cystatin E/M (Cst6) 4.4 

NM_007830 diazepam binding inhibitor (Dbi) 2.2 

AK004912 dual specificity phosphatase 23 (Dusp23) 2.3 

AK021364 E130101E03Rik, RIKEN cDNA E130101E03 gene 2.4 

AF277093 Elovl4 mRNA, complete cds. 4.2 

M14721 epidermal profilaggrin 3 

NM_010634 fatty acid binding protein 5, epidermal (Fabp5) 8.3 

NM_010211 four and a half LIM domains 1 (Fhl1) 2.4 

NM_019516 galectin-related inhibitor of proliferation (Grip1) -2.3 

NM_010354 gelsolin (Gsn) -2.2 

NM_008130 GLI-Kruppel family member GLI3 (Gli3) 3.1 

NM_008131 glutamine synthetase (Glns) 2.2 

AK012496 Hsdl1, hydroxysteroid dehydrogenase like 1 2.5 

AK004007 
hypothetical Aspartyl protease, retroviral-type family 

profile/Peptidase aspartic, active site containing protein 3 

U96693 immunoglobulin-like receptor PIRB5 (6M1) -2.2 

NM_010552 interleukin 17 (Il17) 4.1 

NM_008469 keratin complex 1, acidic, gene 15 (Krt1-15) -2.8 

NM_008473 Keratin complex 2, basic, gene 1 (Krt2-1) 4.8 

NM_008476 keratin complex 2, gene 6a (Krt2-6a) 2.3 

NM_010715 ligase I, DNA, ATP-dependent (Lig1) -2.3 

AK003656 Limb region 1 like (Lmbr1l) 3.8 

AF251268 Low affinity sodium-glucose cotransporter (Slc5a4b) -2.5 

NM_025349 
LSM7 homolog, U6 small nuclear RNA associated (S. 

cerevisiae) -2.3 

M16355 major urinary protein I (MUP I) -2.7 

M16360 major urinary protein V (MUP V) -2.2 

NM_011847 mammalian relative of DnaJ (Dnajb6) 2.4 
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Table 6-4 Continued 
 

Gene ID Gene Name 
Fold 

change 

NM_008613 meiosis-specific nuclear structural protein 1 (Mns1) 2.5 

NM_008564 
minichromosome maintenance deficient 2 (S. cerevisiae) 

(Mcm2) 4.6 

BC013625 NOL1/NOP2/Sun domain family 2 (Nsun2) 3.1 

AF332077 Parathyroid hormone receptor 2 (Pthr2) 2.2 

NM_008987 pentaxin related gene (Ptx3) 2.4 

M12289 Perinatal skeletal myosin heavy chain mRNA, 3' end. -2.5 

NM_008952 peroxisomal sarcosine oxidase (Pso) 3.8 

NM_011078 PHD finger protein 2 (Phf2) -2.4 

NM_011182 pleckstrin homology, Sec7 and coiled/coil domains 3 (Pscd3) 2.9 

AK011193 Plexin A1 (plxna1) 2.6 

NM_019402 poly(A) binding protein, nuclear 1 (Pabpn1) 3.3 

NM_007552 Polycomb group ring finger 4 (Pcgf4) 2.2 

NM_007743 procollagen, type I, alpha 2 (Cola2) -2.3 

NM_031163 procollagen, type II, alpha 1 (Col2a1) -2.2 

D17546 Procollagen, type XVIII, alpha 1 (Col18a1) 3.6 

AF316872 PTEN induced putative kinase 1 (Pink1) 2.3 

AK003705 putative weakly similar to skin-specific protein 3.1 

U94828 regulator of G-protein signaling 16 (Rgs16) 4.5 

NM_011289 ribosomal protein L27 (Rpl27) 2.5 

NM_026811 RIKEN cDNA 1110031B11 gene (1110031B11Rik) 7.5 

NM_026394 RIKEN cDNA 1110055J05 gene (1110055J05Rik) 4.6 

NM_027205 RIKEN cDNA 1600015I10 gene (1600015I10Rik) 2.2 

NM_027137 RIKEN cDNA 2310037L11 gene (2310037L11Rik) 3.7 

NM_029667 RIKEN cDNA 2310069N01 gene (2310069N01Rik) 4.9 

NM_027622 RIKEN cDNA 4921530G04 gene (4921530G04Rik) -2.5 

AK011583 RIKEN clone 2610028E01 -2.2 

AK006757 ring finger and FYVE like domain containing protein (Rffl) -2.3 

AK020481 RNA binding motif protein 12 (Rbm12) 3.5 

X03766 sceletal muscle alpha-actin (pAM 91; AA 40-375) -3.2 

NM_011408 schlafen 2 (Slfn2), mRNA. -3.2 

AK017710 Similar to basic proline-rich protein 2.9 
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Table 6-4 Continued 
 

Gene ID Gene Name 
Fold 

change 

AK002609 
sirtuin 5 (silent mating type information regulation 2 

homolog) (S. cerevisiae), 3.4 

NM_013670 small nuclear ribonucleoprotein N (Snrpn) 2.9 

NM_028625 Small proline rich-like 2 (Sprrl2) 4.7 

NM_025984 Small proline rich-like 3 (Sprrl3) 2.7 

NM_026822 Small proline rich-like 5 (Sprrl5) 2.4 

AK011425 
solute carrier family 25 (mitochondrial carrier, phosphate 

carrier), member 24 (Slc25a24) 7.6 

AY032863 solute carrier family 26, member 6 2.3 

NM_009216 somatostatin receptor 1 (Smstr1) 3.6 

AF407332 sperm ion channel -2.3 

NM_009261 spermatid perinuclear RNA-binding protein (Spnr) 3.1 

M92417 Stefin A1 (Stfa1) 7.8 

M92419 stefin A3 (Stfa3) 22.1 

AF124299 Stratum corneum chymotryptic enzyme 2.7 

NM_009359 testis expressed gene 9 (Tex9) 3.9 

AK003152 Titin (Ttn) -2.3 

NM_009369 transforming growth factor, beta induced, 68 kDa (Tgfbi) -2.5 

BC013497 transmembrane protein 66 (Tmem66) 2.3 

NM_009394 troponin C, fast skeletal (Tncs) -2.6 

NM_011620 troponin T3, skeletal, fast (Tnnt3) -2.7 

J02644 type I epidermal keratin 2.9 

AK013783 Ubiquitin specific protease homolog [Homo sapiens] -2.6 
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Table 6-5 List of differentially expressed genes related with immune functions in 5-week 

HrrhR/HrrhR mice compared with HrrhR/+ mice. Microarray analysis was done with 

ImaGene and GeneSight softwares from BioDiscovery. 

 

Gene ID Gene Name 
Fold 

change 
AF151729 clone 7 T-cell receptor alpha chain 2.3 
M59956 Ig active kappa chain mRNA V-J region, partial cds. 2.8 

AF041927 infected mouse A seq 11, day 10, T cell receptor beta chain 2.8 
AF041896 infected mouse B seq 5, day 7, T cell receptor beta chain 2.5 
AF041907 infected mouse C seq 10, day 7, T cell receptor beta chain. 2.8 
AF041910 infected mouse C seq 13, day 7, T cell receptor beta chain 4.0 

Y11589 mRNA for antibody light chain, clone library pYBM-AL6. 2.8 
Z12528 Rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ) 3.5 
Z12473 Rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 4.3 
Z12427 Rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 3.3 
Z12472 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 2.7 
Z12498 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 2.5 
Z12184 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 2.9 
Z12497 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 2.8 
Z12416 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 2.7 
Z12416 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 2.7 
Z12461 rearranged T-cell receptor beta chain Vbeta5 repertoire (VDJ). 2.5 
Z12555 Rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ) 3.6 
Z12581 rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ) 3.0 
Z12580 Rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ). 3.1 
Z12545 rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ). 2.4 
Z12254 rearranged T-cell receptor beta chain Vbeta8 repertoire (VDJ). 2.2 
X61756 Rearranged T-cell receptor beta variable region (Vb17a). -2.2 

AE008686 
T-cell receptor alpha/delta locus section 4 of 4 of the complete 

region 2.2 
M16120 T-cell receptor insulin B-chain reactive beta chain VNDNJC -2.6 
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Table 6-6 Enriched categories and the genes in each enriched categories in 5-week old 

HrrhR/HrrhR mice compared with HrrhR/+ mice. The microarray analysis was done with 

ImaGene and GeneSight from BioDiscovery. The differentially expressed genes were 

applied to DAVID 2.1 for functional annotation based on gene ontology. 

 
Enriched Categories Enriched Genes 

J02644 Type I epidermal keratin 
X03766 actin, alpha 1, skeletal muscle 

AK003744 cystatin E/M 
Z83816 dynein, axonemal, heavy chain 3 

NM_008469 keratin complex 1, acidic, gene 15 
NM_008473 keratin complex 2, basic, gene 1 
NM_008476 keratin complex 2, basic, gene 6a 
NM_008613 meiosis-specific nuclear structural protein 1 

M12289 
Myosin, heavy polypeptide 8, skeletal muscle, 

perinatal 
NM_009261 spermatid perinuclear RNA binding protein 
AK003152, 

X64700 Titin 
NM_009394 troponin C2, fast 

CYTOSKELETON 
 
 
 
 
 
 
 
 
 
 NM_011620 troponin T3, skeletal, fast 

M12289 
Myosin, heavy polypeptide 8, skeletal muscle, 

perinatal 
AK003152, 

X64700 Titin 
NM_009394 troponin C2, fast 

MYOFIBRIL 
 
 NM_011620 troponin T3, skeletal, fast 

J02644 Type I epidermal keratin 
NM_008469 keratin complex 1, acidic, gene 15 
NM_008473 keratin complex 2, basic, gene 1 
NM_008476 keratin complex 2, basic, gene 6a 

INTERMEDIATE 
FILAMENT 

CYTOSKELETON 
 
 NM_008613 meiosis-specific nuclear structural protein 1 

X03766 actin, alpha 1, skeletal muscle 

M12289 
Myosin, heavy polypeptide 8, skeletal muscle, 

perinatal 
AK003152, 

X64700 Titin 
NM_009394 troponin C2, fast 

ACTIN 
CYTOSKELETON 

 
 NM_011620 troponin T3, skeletal, fast 
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Table 6-6 Continued  
 

Enriched Categories Enriched Genes 
X03766 actin, alpha 1, skeletal muscle 
Z83816 dynein, axonemal, heavy chain 3 

NM_008469 keratin complex 1, acidic, gene 15 
NM_008473 keratin complex 2, basic, gene 1 
NM_008476 keratin complex 2, basic, gene 6a 

CYTOSKELETON 
ORGANIZATION 

AND BIOGENESIS 
 
 
 M12289 

myosin, heavy polypeptide 8, skeletal muscle, 
perinatal 

NM_007743 procollagen, type I, alpha 2 
NM_031163 procollagen, type II, alpha 1 

D17546 procollagen, type XVIII, alpha 1 

ANION 
TRANSPORT 

 
 AY032863 solute carrier family 26, member 6 

U80888 Angiomotin 
AK011583 integrin alpha V 

ANGIOGENESIS 
 
 D17546 procollagen, type XVIII, alpha 1 

NM_025349 
LSM7 homolog, U6 small nuclear RNA 

associated (S. cerevisiae) 
Z12184, 
Z12254 RIKEN cDNA 1810049H19 gene 

AK004007 RIKEN cDNA 2300003P22 gene 
AK012496 RIKEN cDNA 2700067E09 gene 
AK006506 enolase 3, beta muscle 
AF124299 kallikrein 7 (chymotryptic, stratum corneum) 
AK003152, 

X64700 Titin 

CELLULAR 
MACROMOLECULE 

CATABOLISM 
 
 
 
 
 AK013783 Ubiquitin specific protease 32 

AK012496 RIKEN cDNA 2700067E09 gene 
AK003152, 

X64700 Titin 
CYSTEINE-TYPE 
ENDOPEPTIDASE 

ACTIVITY AK013783 Ubiquitin specific protease 32 

NM_009394 troponin C2, fast STRIATED 
MUSCLE THIN 

FILAMENT NM_011620 troponin T3, skeletal, fast 
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Figure 6-11 Gene networks of the differentially expressed genes from 5-week old 

HrrhR/HrrhR vs. HrrhR/+ mice analyzed with Ingenuity. The microarray analysis was done 

with ImaGene and GeneSight from BioDiscovery. Red: genes with downregulated 

expression. Green: genes with upregulated expression.  
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found that three signaling pathways were affected, including Wnt/β-catenin, apoptosis, 

and ERK/MAPK signaling pathways. All of these pathways play significant roles in hair 

follicle development and growth. The alteration of these pathways suggests that the 

function of Hr gene is directly or indirectly related with these signaling pathways. 

Discussion 

 A novel nonsense mutation R814X in exon 12 of Hr was successfully identified 

in rhino-like mice that originated at Oak Ridge National Laboratory. This mutation has 

been designated as HrrhR in MGI (Mouse Genome Informatics) (Blake et al., 2003). The 

mutation has been used to genotype the mutant mice in relation to the rhino-like 

phenotype, across more than one hundred mice. Homozygous mice always contain the 

mutation in both chromosomes. Heterozygous mice are always heterozygous for the 

nonsense mutation, meaning a mixture of a mutated allele and a wild type allele. Wild 

type mice do not contain any mutations in the same region. Thus, it is confirmed that the 

HrrhR mutation is a disease-causing mutation that is responsible for the typical rhino 

phenotype of rhino-like mutant mice and that HrrhR is an allele of Hr. There are sixteen 

pathogenic Hr mutations (including this mutation) reported to cause the phenotype of 

hairless or rhino in mice (table 2-2). It indicates that there is a wide spectrum of different 

Hr mutations including nonsense mutations, insertion of a provirus in the introns, and 

deletions in the exons.  

 The mutation of HrrhR is a change of C to T in position of 3134 based on the 

sequence of Hr mRNA (NM_021877), resulting in a nonsense mutation in Hr, which 

should lead to nonsense-mediated mRNA decay (Maquat, 2005). The expression of Hr 

was examined in dorsal skin of mice aged from 1 day to 7, 14, and 35 days by Northern 

blotting with two probes covering different portions of Hr mRNA. Hr expression in the 

dorsal skin of HrrhR/HrrhR mice was significantly reduced compared to those in either +/+ 

or HrrhR/+ mice at all ages (day 1, 7, 14, and 35). Lack of expression of Hr due to Hr 

mutations leads to the complete loss of hair in mice (Cserhalmi-Friedman et al., 2004; 

Panteleyev et al., 1998b). Decreased expression of Hr has been directly linked to the 

hairless phenotype by topically applying Hr-specific catalytic oligonucleotides designed 

to cleave the mouse Hr mRNA to recapitulate the hair phenotype (Cserhalmi-Friedman et 
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al., 2004). Significantly reduced Hr expression in HrrhR/HrrhR mice validates the nonsense 

mutation in Hr responsible for the rhino-like phenotype. This novel nonsense mutation 

was confirmed in more than one hundred mutant mice by direct sequencing of the region 

containing the mutation. It has been successfully used as a basic tool to genotype the 

mice before they develop the phenotype of hair loss.  

 The phenotypic change was seen at as early as 10 days of age with widening of 

the infundibulum and formation of utricles in the hair follicles, which becomes more 

severe with age. Dermal cysts were formed by 4 weeks of age and no normal hair follicle 

structures were observed. The phenotype is very similar to that of Hr-/- mice, which 

develop utricles at as early as postnatal day 12 (Zarach et al., 2004). The earlier formation 

of utricles in our mutants suggests a similar severity of the phenotype, including the 

wrinkling skin. Aged HrrhR/HrrhR mutants have skin wrinkling similar in severity to Hr-/- 

mice, consistent with the extremely low level of Hr mRNA in HrrhR/HrrhR mutants. 

However, the pattern of hair loss is random in HrrhR/HrrhR mutants, which is different 

with the pattern in Hr knockout mice starting from head.  

 In order to identify the downstream events of HrrhR mutation, we applied 

microarray analysis to study the genes with altered expressions prior to (7-day), 

coinciding with (10-day), and after (5-week) phenotype development. We did not find 

genes with statistically significant alteration in expression at 7 days of age. However, 

many genes were found with statistically significant increased expressions in HrrhR/HrrhR 

mutants, which are consistent with the loss of Hr as a transcriptional co-repressor.  

Many of these differentially expressed genes are linked to hair follicle cycling, including 

IL-17, Rgs16, Krt1-10, Krt2-1, Lipocalin2 (interacting with Limr), Itgb4, Mcm2, Mll, and 

Crebl1 (Lin et al., 2004). Functional annotation indicates that cell organization, structural 

molecules, and coiled-coil interactions are significantly altered in skin of 10-day old 

mutants. 

 IL-17, a proinflammatory cytokine produced by T cells, plays an important role in 

activating T cells in allergen-specific T cell-mediated immune responses (Nakae et al., 

2002). Its expression characterizes a unique T helper linage that regulates tissue 

inflammation and the overexpression of IL-17 in lung causes inflammation (Park et al., 
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2005). It is known that many inflammatory cytokines, including TNF-α, IL-1α, induce 

drastic morphologic changes and growth arrest of hair follicles in vitro as well as in vivo 

(Groves et al., 1995; Mahe et al., 1996). This might suggest the involvement of the 

increased expression of IL-17 in the development of dermal cysts and hair loss. 

 Among the differentially expressed genes, Itgb4 (integrin β4) was upregulated in 

10-day mutant mice. Itgb4 is a glycoprotein associating with α6 integrin to form the 

α6/β4 complex as a receptor for laminin and plays a critical structural role in the 

hemidesmosome of epithelial cells. Defects in Itgb4 cause epidermolysis bullosa letails 

characterized by mucocutaneous fragility and gastrointestinal atresia (Iacovacci et al., 

2003), and long blistering of the skin associated with hair and tooth abnormalities (van 

der Neut et al., 1999). Itgb4 was shown to be a signature gene of outer root sheath (Rendl 

et al., 2005) a region where Hr is also expressed (figure 4-11) (Panteleyev et al., 1999). It 

was shown that hairless phenotype in Hrhr/Hrhr mutant mice is due to the dyscoordination 

of cell proliferation in distinct hair follicle compartments, malpositioning of the proximal 

inner root sheath, striking atrophy of outer root sheath and failure of trichilemmal 

keratinization in the developing club hair (Panteleyev et al., 1999). In catagen stage, the 

hair bulb and central outer root sheath disintegrate into separate cell clusters in Hrhr/Hrhr 

mutants, thus disrupting all epithelial contact with the dermal papilla. The altered 

expression of Itgb4 might alter the adhesion between center outer root sheath and hair 

bulb and lead to the formation of utricles and the failure to initiate the first hair cycle in 

HrrhR/HrrhR mutant mice. Therefore, the loss of Hr expression in the outer root sheath 

might induce the expression of Itgb4 directly and lead to the phenotype of rhino mice, 

suggesting that Itgb4 might be a direct target of Hr function, which needs to be validated 

in the future. 

 Krt2-1 and Krt1-10, which are coexpressed in suprabasal terminally 

differentiating epithelia cells, are both upregulated by about 3 fold in 10-day old 

HrrhR/HrrhR mutant mice. Krt2-1 and Krt1-10 are also expressed in the inner root sheath 

of hair follicles (Botchkarev and Paus, 2003). Mutations in Krt2-1 or krt1-10 lead to 

epidermolytic hyperkeratosis, epidermolysis bullosa simplex, and epidermolytic 

palmoplantar keratoderma in human patients (Porter et al., 1996). Increased expression of 
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Krt2-1 and Krt1-10 suggests increased terminal differentiation in the inner root sheath 

and might lead to the altered keratinization pattern in skin of HrrhR/HrrhR mutants.  

 Limr, lipocalin-interacting membrane receptor, was upregulated in 10-day old 

HrrhR/HrrhR mutants. Lipocalins are transporters for small hydrophobic molecules, such as 

lipids, steroid hormones, bilins, and retinoids. The ablation of RXR (retinoid X receptor)-

α leads to a progressive alopecia after the first pelage and the destruction of hair follicle 

architecture and the formation of utricles and dermal cysts in adult mice, suggesting that 

RXRα plays a key role in anagen initiation during the hair follicle cycle (Li et al., 2001). 

In addition, RXRα ablation results in epidermal interfollicular hyperplasia with 

keratinocyte hyperproliferation and aberrant terminal differentiation, accompanied by an 

inflammatory reaction of the skin (Li et al., 2001). This suggests that the transportation of 

retinoids might play important roles in hair growth and hair follicle cycles. The increased 

expression of Limr might affect the function of Lipocalin, the transportation of retinoids, 

thus the hair follicle cycles.  

 Hr has been found to trigger reactivation of hair growth by repressing a modulator 

of Wnt signaling, Wise, to promote Wnt signaling pathway in Hr knockout mice during 

the initiation of first hair follicle cycle(Beaudoin et al., 2005). In 10-day old mice, loss of 

Hr function did not lead to alteration of Wise expression change examined by quantitative 

real time PCR, suggesting that hair loss in HrrhR/HrrhR mutant mice may not be directly 

due to the expression change of Wise, at least in terms of utricle formation. We did find 

that Wnt signaling pathway was affected in 5-week mutant mice, supporting the possible 

relationship between Hr and Wnt pathway. Regulation of Wise gene expression is just 

one part of Hr functions in hair follicle growth and cycles. The relationship between Hr 

and Wise signaling may be specific to the stage of the hair cycle, and Hr is differentially 

regulated from anagen to catagen (Beaudoin et al., 2005). 

 Microarray analysis with 5-week old mutant mice is consistent with the 

phenotype of hair loss. We found that many genes encoding procollagens, keratins, 

transcription factors, proteinase, and kinases, were enriched with differential expressions, 

suggesting their involvement in the HrrhR/HrrhR phenotype. Functional annotation of 

microarray data indicated that categories of cytoskeleton and anion transport are enriched 



www.manaraa.com

124 124

in 5-week HrrhR/HrrhR mutant mice, suggesting that Hr is related to the regulation of the 

genes in these categories. Network analysis suggests that signaling through Wnt/β-

catenin, ERK/MAPK, and apoptosis pathways, is altered in HrrhR/HrrhR, based on 

differential expression. Alteration of apoptosis has been confirmed previously in the 

catagen of hair follicles (Panteleyev et al., 1999) as increased apoptosis in dermal papilla 

of Hrhr/Hrhr mutant mice. This confirmation strengthens the reliability of our microarray 

analysis. 

 We also noticed that many immune-related genes display differential expression 

in HrrhR/HrrhR mutants at both 10 days and 5 weeks of age. We also found that the thymus 

in HrrhR/HrrhR mutants was significantly smaller compared to HrrhR/+ mice at 4-weeks 

and the difference is more significant as the mice age. Accelerated atrophy of the thymus 

with age has been reported in both Hrrh-J/Hrrh-J and Hrrhsl/Hrrhsl mutants (San Jose et al., 

2001; Zhang et al., 2005). Detailed immunohistochemistry analysis of the thymus in  

Hrrh-J/Hrrh-J mutant mice shows relative cortical atrophy, enlargement of blood vessels, 

proliferation of perivascular connective tissue, and the appearance of cysts (San Jose et 

al., 2001). Hr has been reported to be expressed in thymus, suggesting the possible 

involvement of Hr in T cell development and functions (Cachon-Gonzalez et al., 1994). 

Skin also contains many macrophages, mast cells, and Langerhan’s cells, which are 

related with immune systems. Atrophy of the thymus in Hrrh/Hrrh mutants may also cause 

immune changes in skin including hair follicles. Thus, the differential expression of 

immune-related genes in skin is associated with the loss of Hr function.  

 In summary, we have identified a novel nonsense mutation in murine Hr gene, 

leading to significantly reduced expression of Hr probably through nonsense-mediated 

decay. The phenotype of HrrhR/HrrhR mutants is very similar with Hr-/- mice, including 

extremely low levels of Hr expression. Microarray analysis highlighted a gene expression 

profile that is consistent with the development of hair loss phenotype. In particular, 

several candidate genes (e.g., Itgb4) were highlighted as potential initial downstream 

events due to the HrrhR mutation.  
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Chapter 7 Conclusions and future directions for elucidating the role of Hr  

in hair follicle development and maintenance 

Molecular and physiological basis for hair loss in Hrn mutant mice  

 Near naked hairless mice (Hrn) arose spontaneously at Oak Ridge National 

Laboratory in the 1980s. The mutation was first reported in 1983 by Stelzner (Stelzner, 

1983) as an autosomal, semi-dominant allele of the mouse hairless gene. Semi-

dominance means that the heterozygous mutants have a less severe phenotype compared 

to the homozygotes. The homozygotes never develop a normal pelage, and heterozygotes 

have a sparse coat that is severe with age. Since then, no other studies have examined this 

mutant.  

Both the phenotype and the molecular mechanisms involved with the phenotype 

were characterized systematically. It was found that Hrn/Hrn mutants have delayed body 

growth in terms of both body weight and body length. Vibrissae in Hrn/Hrn mutants are 

much shorter and curly. There are few hairs in Hrn/Hrn mutants. Of these few hairs, they 

have normal overlapping cuticles on the surface of hair shaft, with blunt and irregular 

ends. Pili multigemini, which means more than two hair shafts coming out of one piliary 

canal in skin, was found in 5-week and 5-month old Hrn/+ mutants, but not in Hrn/Hrn 

mutants. Histological analysis suggests two alternative mechanisms for this: 1) during 

early anagen, more than two hair follicles were associated with each other and they 

shared one piliary canal on the surface of the skin; 2) during early anagen, more than two 

regions in distinct parts of hair follicles were initiated for keratinocytes proliferation and 

differentiation to produce hair shafts so that more than one hair shaft grows from one hair 

follicle.  

Histological analysis with dorsal skin suggests that the premature keratinization 

occurs in the matrix and precortical region of hair follicle in Hrn/Hrn mutants after birth. 

Hyperkeratosis in hair follicles became more severe as the mice age. Hair follicles were 

completely filled with keratinized materials and the normal structure of hair follicles was 

totally devastated due to the pre-mature keratinization. Dermal cysts were formed and 

mineralized in Hrn/Hrn mutants. Ki-67 antigen staining suggested an abrupt change 

around the line of Auber from proliferation to differentiation in the pre-cortex region of 
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hair follicles in Hrn/Hrn mutants. There are also fewer proliferating cells in the matrix and 

pre-cortical region of hair follicles in Hrn/Hrn mutants. Instead of forming a normal hair 

shaft, a disorganized premature keratinization occurred in the precortex region.  

Although the previous research suggested that Hrn is an allele of Hr, no mutations 

were found within the murine Hr locus by genomic sequencing. Hr was differentially 

expressed in Hrn/Hrn mutants with increased expression at an early age and reduced 

expression in adult animals. This might suggest a regulatory mutation in Hr. At the same 

time, many other candidate genes near Hr locus and with either high expression in skin or 

hair follicle/cycle-related functions were sequenced to identify potential mutations. No 

mutations were found in these candidates. Some microRNAs in the region close to Hr 

locus were also considered for the effort of identifying the mutation although no 

mutations were found.  

 The gene expression profile in Hrn/Hrn mutants was surveyed with mouse 

microarray experiments. Microarray analysis was done with 0-, 7-, and 35-day old mice. 

A set of keratins (Krt) and keratin-associated proteins (Krtap) was found with differential 

expression in Hrn/Hrn mutants compared to +/+ mice. Most of the keratins and keratin-

associated proteins, many of which are related with hair shaft formation and growth, were 

downregulated in Hrn/Hrn mutants, which is consistent with the phenotype of hair loss. 

Keratinization is a time- and space-controlled event in hair follicles. Any disturbance in 

the expression of Krt and Krtap might interfere with the balance of keratinization control 

and hair shaft formation. However, the working forces behind the differential expression 

of Krt and Krtap were not identified since the genetic mutation was not identified. Some 

other genes were also identified at day 0 after birth from microarray analysis. These 

genes include Krt2-6a, Sh2-B, Smarac2, Sprr1b, and several members of major urinary 

proteins (MUP), and some may play important roles in the development of the near naked 

phenotype. Microarray analysis showed that many genes normally with low expression in 

anagen phase displayed increased expression, which is consistent with the hair loss. 

Microarray analysis with 7-day old mice suggests that members of cytoskeleton, keratin, 

and extracellular matrix structural components displayed altered expression in the 
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mutants. Calcium signaling pathway and transcriptional regulation were also significantly 

altered in the mutant mice due to the mutation.  

 However, the genetic change of the Hrn mutation has not been identified although 

a great effort of this dissertation research was to sequence DNA and cDNA in search for 

potential mutations. It suggests that either a regulatory mutation that increases Hr 

expression or an unknown gene mutation regulates the expression of BMP-4 and affects 

the expression of down-stream effectors including Foxn1, β-catenin, Hes1, distinct 

keratins and keratin-associated proteins. These alterations disturb the balance of 

proliferation and differentiation in the matrix and precortical region of hair follicle, 

leading to premature keratinization in these regions and finally the formation of 

mineralized dermal cyst.  

The Hrn mutation could be used as a model to study human diseases. Marie Unna 

hereditary hypotrichosis (MUHH) maps to the same genomic region as Hrn (Cichon et al., 

2000; Green et al., 2003). Patients with MUHH manifest a similar phenotype as Hrn 

mutant mice. For both models, mutations within the HR coding region have been 

excluded as the cause of the hair phenotype (Cichon et al., 2000; He et al., 2004; Lefevre 

et al., 2000; van Steensel et al., 1999). It is possible that mutations in a homologous gene 

underlie these two models, or that they are both due to a regulatory mutation in Hr. 

MUHH has been described as autosomal dominant (Argenziano et al., 1999), while Hrn is 

semi-dominant (Stelzner, 1983).  However, given the low incidence of MUHH and the 

relatively small number of affected individuals within the population, it is possible that 

this disorder is also semi-dominant and that individuals homozygous for the underlying 

mutation would display a much more severe phenotype. Characterization of Hrn mutation 

might help to identify the mutation in MUHH patients and to find new ways to improve 

or cure the hair loss in these patients. Microarray analysis with Hrn mutation provides the 

molecular clues of the phenotype development and helps to improve the understanding of 

hair growth and hair follicle cycle.  

Molecular mechanisms underlying hair loss in HrrhR mutant mice 

 The mutation in HrrhR mutant mice also arose spontaneously in Oak Ridge 

National Laboratory, several generations downstream of a translocation experiment. The 
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mutation is autosomal recessive, and only homozygous mutants have the phenotype of 

hair loss. Mutants have normal hair follicle morphogenesis, but fail to initiate the first 

hair cycle. Utricles begin to form at 10 days after birth and the infundibulum becomes 

wider. The hair follicles are filled with keratinized materials so that the structure of hair 

follicles is destroyed and dermal cysts are formed. The skin becomes wrinkled and severe 

with age. The mutation was successfully identified as a nonsense mutation, leading to 

dramatically reduced expression of Hr in the homozygotes, as evidenced by Northern 

blotting.  

 Microarray analysis was used to identify the downstream molecular events of this 

nonsense mutation. Mice at an age prior to the formation of utricles (7 days) and an age 

that coincided with the formation of utricles (10 days) were used in the microarray 

analysis to identify the earliest changes in gene expression due to the HrrhR mutation. 

Differentially expressed genes, including IL-17, Krt1-10, Krt2-1, Limr, and Itgb4, were 

identified in mutant mice at 10 days, but not at 7 days. These differentially expressed 

genes might provide useful information for the potential molecular target of Hr in hair 

follicles. IL-17, as a pro-inflammatory cytokine, may play important roles in hair growth 

and hair follicle cycles. Krt1-10 and Krt2-1 are important for the terminal differentiation 

of keratinocytes in skin. Itgb4, as a signature gene of outer root sheath, manifests 

increased expression, coinciding with the disintegration of hair bulb and the outer root 

sheath and loss of Hr expression in the outer root sheath. It suggests that Hr might 

regulate the expression of Itgb4 in the outer root sheath to help initiate the first hair cycle. 

Microarray analysis with mice at both 10 days and 5 weeks of age suggests the alteration 

of immune function in skin, indicating the involvement of Hr in immune system, which is 

consistent with the accelerated atrophy of the thymus in homozygous mutants. The 

network and pathway analysis of the microarray data shows that signaling through 

Wnt/β-catenin, ERK/MAPK, and apoptosis pathway is altered in HrrhR/HrrhR mice, 

suggesting the possible function of Hr to regulate these pathways.  

Hypothesis for the distinct roles of Hr in both Hrn and HrrhR mutant mice 

 Hr protein is reported to translocate to the nucleus (Djabali et al., 2001), to 

associate with nuclear matrix, and to form a repressor complex with other nuclear 
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receptors, including thyroid hormone receptors (Potter et al., 2002), vitamin D receptors 

(Hsieh et al., 2003), ROR-α (Moraitis et al., 2002). Hr is also associated with histone 

deacetylases (HDACs), indicating its potential roles in chromatin remodeling (Beaudoin 

et al., 2005; Potter et al., 2002). It is reported recently that Hr promotes the Wnt signaling 

pathway to initiate the first hair cycle, by repressing the expression of gene WISE, an 

inhibitor of Wnt signaling (Beaudoin et al., 2005). The distinct roles of Hr in our two 

mutant mice are summarized in figure 7-1. Briefly, the loss of Hr in HrrhR/HrrhR mutant 

mice significantly alters Wnt/β-catenin, apoptosis, and ERK/MAPK signaling pathways, 

leads to increased expression of many genes including Itgb4, IL-17, Krt2-1, and Krt1-10, 

which might be associated with widening of infundibulum of hair follicle and formation 

of utricles. The normal structures of hair follicles were completely destroyed in 

HrrhR/HrrhR mutants by 5 weeks of age, associated with the decreased expression of hair 

keratins and keratin-associated proteins and hair loss. However, the roles of Hr in Hrn 

mutants are different compared to those in HrrhR mutants, which are shown in figure 7-1. 

Hr expression is upregulated at early days in homozygous mutants either due to a 

regulatory mutation in Hr or an unknown gene mutation, which directly or indirectly 

leads to the increased expression of BMP-4 and the reduced proliferation in hair matrix. 

The increased expression of BMP-4 results in the decreased expression of Foxn1, Hoxc13, 

hair keratins, and keratin-associated proteins, and premature keratinization, which leads 

to abnormal hair shaft differentiation, finally the formation of dermal cysts, destruction of 

hair follicles, and hair loss.  

Future directions 

 To identify the Hrn mutation, transgenic mice need to be generated with the 

overexpression of Hr in the inner and outer root sheath and the matrix of hair follicles as 

well as the fibroblasts in the sinus, if possible. The overexpression of Hr in these regions 

matches with the Hrn mutant mice and can be used to validate if the Hrn mutation is due 

to Hr overexpression. The problem for this is to find the correct promoter to express Hr 

in these regions. Otherwise, it is not very useful for the validation of Hrn mutation. 

Another way to characterize the Hrn mutation is through fine genetic mapping by 

crossing to re-map the locus for Hrn mutation on the chromosome. This task is not 
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Figure 7-1 Schematic illustration of the hypothesized roles of Hr in Hrn and HrrhR mutant 

mice. Red color indicates increased expression and blue indicates decreased expression. 

The question mark (?) indicates unknown mechanisms. 
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challenging, but very labor-intensive. The outcome of this approach is also not 

guaranteed to identify the mutation. There is a good chance to find the mutation if the 

mutation maps to a different region. This work seems too risky to do in the future. Both 

of the approaches are based on the assumption that Hrn is a single gene mutation in either 

the regulatory sequence or the coding region. If the Hrn mutation is a nonsense mutation 

in the coding region of a single gene, microarray covering the whole mouse genome, at 

least all the genes on mouse chromosome 14 could be done to check expression levels of 

all the genes around Hr. The assumed nonsense mutation should lead to the degradation 

of mutated mRNA through nonsense-mediated decay. A gene or transcript with 

significant reduction of expression in Hrn/Hrn mutants might carry the mutation. This 

strategy has been used with our microarray analysis though our microarray just covers 

about 50% of genes in mouse genome. 

 To characterize the molecular functions of Hr, the HrrhR/HrrhR mutant mice need 

to be studied with more details. We have identified a set of genes with differential 

expression in skin of 10-day old mutants. The alterations in expression need to be 

validated with either real time PCR or in situ hybridization on the tissue dissections. If 

the expression changes of IL-17, Itgb4, Krt2-1, and Krt1-10 could be confirmed with in 

situ hybridization, then the expression of these genes could be examined by reporter 

assay with the overexpression of Hr. These reporter assays help to identify the genetic 

interactions of Hr and possibly the interacting proteins. 
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1. Detailed protocols for aminoallyl labeling of RNA in microarray experiments 

 

1. Purpose  

This protocol describes the labeling of eukaryotic RNA with aminoallyl labeled 

nucleotides via first strand cDNA synthesis followed by a coupling of the 

aminoallyl groups to either Cyanine 3 or 5 (Cy3/Cy5) fluorescent molecules.  

2. Materials  

2.1 5-(3-aminoallyl)-2’deoxyuridine-5’-triphosphate (AA-dUTP) (Sigma; Cat # 

A0410)  

2.2 100 mM dNTP Set PCR grade (Life Technologies; Cat # 10297-018)  

2.3 Anchored T primer (2mg/mL)  

2.4 SuperScript II RT (200U/µL) (Life Technologies; Cat # 18064-014)  

2.5 Cy-3 ester (AmershamPharmacia; Cat # RPN5661)  

2.6 Cy-5 ester (AmershamPharmacia; Cat # RPN5661)  

2.7 QIAquick PCR Purification Kit (Qiagen; Cat # 28106)  

2.8 RNeasy® Mini Kit (Qiagen; Cat # 74106)  

3. Reagent preparation  

3.1 Phosphate Buffers  

3.1.1 Prepare 2 solutions: 1M K2HPO4 and 1M KH2PO4  

3.1.2 To make a 1M Phosphate buffer (KPO4, pH 8.5-8.7) combine:  

 1M K2HPO4……..9.5 mL  

 1M KH2PO4……..0.5 mL 

3.1.3 For 100 mL Phosphate wash buffer (5 mM KPO4, pH 8.0, 80% 

EtOH) mix:  

1 M KPO4 pH 8.5…. 0.5 mL  

MilliQ water………... 15.25 mL  

95% ethanol………... 84.25 mL  

Note: Wash buffer will be slightly cloudy.  

3.1.4 Phosphate elution buffer is made by diluting 1 M KPO4, pH 8.5 to 4 

mM with MilliQ water.  
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3.2 Aminoallyl dUTP  

3.2.1 For a final concentration of 100mM add 19.1 µL of 0.1 M KPO4 

buffer (pH 7.5) to a stock vial containing 1 mg of aa-dUTP. Gently vortex 

to mix and transfer the aa-dUTP solution into a new microtube. Store at –

20ºC.  

3.2.2 Measure the concentration of the aa-dUTP solution by diluting an 

aliquot 1:5000 in 0.1 M KPO4 (pH 7.5) and measuring the OD289. (Stock 

concentration in mM = OD289 x 704)  

3.3 Labeling Mix (50X) with 2:3 aa-dUTP: dTTP ratio  

3.3.1 Mix the following reagents:  

Final concentration  

dATP (100 mM)………5µL…... (25 mM)  

dCTP (100 mM)………5µL…... (25 mM)  

dGTP (100 mM)………5µL…... (25 mM)  

dTTP (100 mM)………3µL……(15 mM)  

aa-dUTP (100 mM)…...2µL……(10 mM)  

Total: 20µL  

3.3.1 Store unused solution at –20°C.  

3.4 Sodium Carbonate Buffer (Na2CO3): 1M, pH 9.0  

4.4.1 Dissolve 10.8 g Na2CO3 in 80 mL of MilliQ water and adjust pH to 

9.0 with 12 N HCl; bring volume up to 100 mL with MilliQ water. Aliquot 

and store at -80°C. 

4.4.2 To make a 0.1 M solution for the dye coupling reaction dilute 1:10 

with water.  

Note: Carbonate buffer changes composition over time; make it fresh 

every couple of weeks to a month.  

3.5 Cy-dye esters 
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4. Procedure  

4.1 Aminoallyl Labeling  

4.1.1 To 10-15 µg of total RNA which has been DNase I-treated and 

Qiagen RNeasy purified, add 2.5 µL Anchored T primers (2 

mg/mL) and bring the final volume up to 18.5 µL with RNase-free 

water.  

4.1.2 Mix well and incubate at 65-70°C for 10 minutes.  

4.1.3 Snap-freeze in ice for 2-3 minutes, centrifuge briefly at >10,000 rpm 

and continue at room temperature.  

4.1.4 Add:  

5X First Strand buffer………….. 6 µL  

0.1 M DTT…………………….. 3 µL  

50X aminoallyl-dNTP mix…….. 0.6 µL  

SuperScript II RT (200U/µL)….. 2 µL  

4.1.5 Mix and incubate at 42°C for 3 hours to overnight (usually 

overnight). 

4.1.6 To hydrolyze RNA, add:  

1 M NaOH 10 µL  

0.5 M EDTA 10 µL  

mix and incubate at 65°C for 15 minutes.  

4.1.7 Add 10 µL of 1 M HCl to neutralize pH.  

4.2 Reaction Purification I: Removal of unincorporated aa-dUTP and free amines 

(use the Qiagen method)  

Note: This purification protocol is modified from the Qiagen QIAquick 

PCR purification kit protocol. The phosphate wash and elution 

buffers (prepared in 3.1.3 & 3.1.4) are substituted for the Qiagen 

supplied buffers because the Qiagen buffers contain free amines 

which compete with the Cy dye coupling reaction.  

4.2.1 Mix cDNA reaction with 300 µL (5X reaction volume) buffer PB 

(Qiagen supplied) and transfer to QIAquick column.  
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4.2.2 Place the column in a 2 ml collection tube (Qiagen supplied) and 

centrifuge at ~13,000 rpm for 1 minute. Empty collection tube.  

4.2.3 To wash, add 750 µL phosphate wash buffer to the column and 

centrifuge at ~13,000 rpm for 1 minute.  

4.2.4 Empty the collection tube and repeat the wash and centrifugation 

step.  

4.2.5 Empty the collection tube and centrifuge column an additional 1 

minute at maximum speed.  

4.2.6 Transfer column to a new 1.5 mL microtube and carefully add 40 µL 

phosphate elution buffer to the center of the column membrane.  

4.2.7 Incubate for 5 minute at room temperature.  

4.2.8 Elute by centrifugation at ~13,000 rpm for 1 minute.  

4.2.9 Elute a second time into the same tube by repeating steps 4.2.6- 4.2.8. 

The final elution volume should be ~80 µL.  

4.2.10 Measure the concentration of cDNA.  

4.2.11 Dry sample in a speed-vac.  

* Here the dried sample could be stored in –20 or –80 °C for a couple of 

weeks 

4.3 Coupling aa-cDNA to Cy Dye Ester.  

4.3.1 Resuspend aminoallyl-labeled cDNA in 10 µL 0.05 M sodium 

carbonate buffer (Na2CO3), pH 9.0; incubate at 37°C for 10-15 

minutes. 

Note: Carbonate buffer changes composition over time so make sure you 

make it fresh every couple of weeks to a month.  

4.3.2 Add 10 ul of labeled cDNA to the appropriate tube of NHS-ester Cy 

dye (dry pellet) 

Note: To prevent photobleaching of the Cy dyes wrap all reaction tubes in 

foil and keep them sequestered from light as much as possible.  

4.3.3 Incubate the reaction for 1 hour in the dark at room temperature.  
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4.4 Reaction Purification II: Removal of uncoupled dye (Qiagen PCR Purification 

Kit)  

4.4.1 To the reaction add 35 µL 100 mM NaOAc pH 5.2.  

4.4.2 Add 250 µL (5X reaction volume) Buffer PB (Qiagen supplied).  

4.4.3 Place a QIAquick spin column in a 2 mL collection tube (Qiagen 

supplied), apply the sample to the column, and centrifuge at ~13,000 for 1 

minute. Empty the collection tube.  

4.4.4 To wash, add 0.75 mL Buffer PE (Qiagen supplied) to the column 

and centrifuge at ~13,000 for 1 minute.  

Note: Make sure Buffer PE has added ethanol before using (see label for 

correct volume).  

4.4.5 Empty collection tube and centrifuge column for an additional 1 

minute at maximum speed.  

4.4.6 Place column in a clean 1.5 mL microtube and carefully add 40 µL 

Buffer EB (Qiagen supplied) to the center of the column 

membrane.  

4.4.7 Incubate for 5 minutes at room temperature.  

4.4.8 Elute by centrifugation at ~13,000 rpm for 1 minute.  

4.4.9 Elute a second time into the same tube by repeating steps 4.4.6- 4.4.8. 

The final elution volume should be ~80 µL.  

4.4.10 Measure the efficiency of dye coupling and dry the sample in the 

speed-vac for about 40-45 min. 
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2. Detailed protocols for microarray hybridizations 

 

1. Purpose 

This protocol describes how to perform microarray hybridization after the 

successful coupling of dyes with cDNA.  

2. Materials and solutions 

2.1 Formamide 

2.2 20X SSC 

2.3 10% BSA 

2.4 10% SDS  

2.5 Mouse cot1 DNA (1 mg/ml) 

3. Reagents preparation 

3.1 1X pre-hybridization buffer 

Formamide                                 7.5 ml  

20X SSC                                    7.5 ml 

10% BSA                                   3.0 ml 

10% SDS                                   300 ul  

dH2O                                        11.7 ml  

Total                                          30 ml 

It can be reused for a few times and store at 4oC. Preheat at 42oC before 

use. 

3.2 1X hybridization buffer 

Formamide                       250 ul 

20X SSC                          250 ul  

10% SDS                           10 ul 

Cot1 DNA(1ug/ul)           100 ul 

dH2O                                390 ul 

Total                               1000 ul 

Store at -20oC. 

3.3 wash buffer 1 
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    20X SSC                      50 ml 

    10% SDS                      10 ml 

    dH2O                           940 ml 

Total                          1000 ml 

Microwave 1 min and 30 sec till the temperature is ~ 42oC. Stir to mix 

temperature. 

3.4 wash buffer 2 

20X SSC                        10 ml  

dH2O                               990 ml 

                        Total                              1000 ml 

3.5 Wash buffer 3 

20X SSC                                       10 ml  

dH2O                                          1990 ml 

Total                                           2000 ml 

4. Procedures 

4.1 Prewarm the pre-hybridization buffer at 42 oC for 10 min. 

4.2 Place printed slides in a slide container containing prehybridization buffer and 

incubate at 42oC water bath for 45 minutes. 

4.3 Wash the prehybridized slides twice (using a forceps to hold the slides) in 

distilled water in two 50ml tubes. 

4.4 Very carefully blow dry slides completely. Hold the slide near the bar code 

end with a forceps and blow-dry first at the barcode away from the array end 

towards the forceps. Then dry the array by blowing down the slides away from 

the forceps. Next dry the back of the slide. Do not wait too long following 

prehybridization to hybridize. Get the slides ready in the hybridization chamber 

(filled with 5X SSC to keep humidity). 

4.5 Prewarm the 1X hyb buffer at 42 oC for 10-15 minutes. Add 35 ul 1X hyb 

buffer to each tube with dried down coupled pellet. Let it sit at room temperature 

for 5 minutes then pipet up and down to dissolve the pellet. The total 

hybridization volume is 70 ul for one mouse 22k slide. Mix for dye swap (Cy3+ 
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Cy5) the appropriate samples, spin briefly and incubate at 95oCfor 5 minutes and 

spin for 30 seconds. 

Note: Never try to put the hyb buffer on ice due to SDS in the buffer! 

4.6 Load the probes to the slides with M-series Lifterslips. The lifterslips should 

not be washed or cleaned by any means before hybridization. The hybridization 

buffer should be loaded from the end of slides without labeling to get samples 

loaded evenly. 

4.7 Wrap the hybridization chamber in aluminum foil and incubate in a 42oC 

water bath overnight. 

4.8 Take the slides out carefully and wash the slides in the rack with wash buffer 

1 at 42oC for 5 minutes with strong stirring. Then the slides were washed with 

buffer 2 at room temperature for 3 minutes twice. The slides were finally washed 

with buffer 3 at room temperature for 1 minutes four times.  

Notes: All the slides should face out of the stirring in the container. Try to keep 

the slides merged in the washing solutions all the time to reduce the chance of 

unwashed dyes to dry. 

4.9 The slides were blowed dry and ready to scan. 

Notes: The light should be turned off during the loading of samples to the slides 

and during the slide washing after hybridization. 
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3. Generation of the antiserum against murine Hr  

  

The Hr-specific antiserum was generated based on the report from Thompson’s 

group in John Hopkins University (Potter et al., 2001). Briefly, the amino acids 450-730 

of mouse Hr were expressed as a GST (glutathione S-transferase) fusion protein and 

purified with GST beads. The fusion protein was used to immunize rabbits (Covance).  

The region of Hr corresponding to amino acids 450-730 is 1728-2567 base pairs 

in NM_021877. A pair of primers was designed to amplify the segment: Hr-F5: 5’-

CAACGGATCCATATAGGAAGCAAGGCGGAG-3’; Hr-R5: 5’-

CGCCGAATTCCTC- TTCTTTGATGTCCTTGGTC-3’. PCR with Hr-F5/R5 was used 

to generate the fragments 1728-2567 bp in NM_021877. There are BamH1 digestion site 

in Hr-F5 primer and EcoRI digestion site in Hr-R5 primer. The PCR products from Hr-

F5/R5 were digested with BamH1 and EcoRI at 37ºC. The pGEX-3X vector (a gift from 

Dr. Yisong Wang in Oak Ridge National Lab) was digested with BamH1 and EcoRI at 

37ºC at the same time. The digested PCR products and pGEX-3X vector were separated 

by agarose gel and purified by GFX column from Amersham. The PCR products were 

ligated with digested pGEX-3X vector, and transfected into JA226 cells by 

electroporation with 1700 Volts for 5 milli-seconds. The transfected clones were 

validated with digestion of BamH1 and EcoRI. The expression of Hr peptide was induced 

by adding 1mM of IPTG (isopropyl-β-D-thiogalactopyranoside). GST-Hr protein was 

purified with GST agarose beads. The purification was validated by SDS-PAGE (sodium 

dodecyl sulfate polyacrylamide gel electrophoresis) with Comassie Blue staining. Totally 

one milligram of GST-Hr fusion protein was sent to Covance to immunize two rabbits to 

generate the Hr antiserum.  
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4. Regulation of human HR gene expression by thyroid hormone and vitamin D3 in 

human keratinocyte HaCaT cell line 

 

 It has been reported that vitamin D receptor physically interacts with HR (Hsieh 

et al., 2003). Hr also acts as transcriptional co-repression of both thyroid hormone 

receptor (TR) and the orphan nuclear receptor, RORα (Moraitis et al., 2002; Potter et al., 

2001). However, it is still unknown whether the expression of Hr inside the cells is 

ligand-dependent. Therefore, we used human keratinocyte HaCaT cell line (gift from Dr. 

G. Timothy Bowden in the University of Arizona, Tucson, Arizona) to study the effects 

of thyroid hormone (T3) and vitamin D3 (VD3) on the expression of HR. The final 

concentration of both TH and VD3 was 50 nM for the treatment according to the 

literatures. The cells were treated for 24 and 48 hours with TH or VD3. The cells from 0 

hours of both treatments were used as time series control and the cells from either 24 or 

48 hours group without either treatment were also used for treatment controls. Each 

group of treatment or the control contains at least 3 dishes of HaCaT cells for design. The 

total RNA was extracted from HaCaT cells after the proper treatments with RNeasy kit 

from Qiagen. The complimentary DNA (cDNA) was generated by RT-PCR with 

oligo(dT) primers and 1 ug of total RNA. A pair of primers for real time PCR was 

designed to amply the human hairless from the cell lines: HrQF5: 5’-

CACCAGGTCTGGGTCAAGTT-3’ and HrQR5: 5’-GGGCGTTTTCTGTGTTGATT-3’. 

It was found that the HR expression in HaCaT cells are not affected by either thyroid 

hormone or vitamin D3, suggesting the regulation of HR is ligand-independent of thyroid 

hormone and vitamin D3. Our results are consistent with the finding from Dr. 

Christiano’s groups (Engelhard and Christiano, 2004), which is that the regulation of Hr 

expression in keratinocytes is T3 independent.  
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